
www.it-ebooks.info

http://www.it-ebooks.info/

Android Game Programming
by Example

Harness the power of the Android SDK by building
three immersive and captivating games

John Horton

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Android Game Programming by Example

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Production reference: 1250615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-012-2

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
John Horton

Reviewers
Håvard Kindem

José Rodriguez-Rivas

Commissioning Editor
Nadeem N. Bagban

Acquisition Editor
Tushar Gupta

Content Development Editor
Siddhesh Salvi

Technical Editor
Prajakta Mhatre

Copy Editor
Charlotte Carneiro

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Tejal Soni

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

John Horton is a technology enthusiast based in the UK. When he is not creating
apps and writing books or blog articles for http://www.gamecodeschool.com,
he can be found playing or making video games with his two sons.

www.it-ebooks.info

http://www.gamecodeschool.com
http://www.it-ebooks.info/

About the Reviewers

Håvard Kindem is a game developer from Norway who has a long-lived passion
for games and game development. He started programming at an early age, which
later resulted in an MSc in game technology. During his studies, Håvard became the
founding member and CEO of Fallen Leaves Interactive, a group focusing on PC,
Xbox, and Android development. The company made games for clients such as KLM
Royal Dutch Airlines and contributed to Games4Health.

Currently, Håvard is employed at the National Lottery Association in Norway,
where he works as a concept developer. In order to find new exciting products for its
about 2.8 million customers, he has, among other things, worked on and published
multiple mobile games. Håvard remains an avid gamer, and when he is not busy
releasing a new project, he loves to return to the old classics or spend the evenings
playing his bass guitar.

I would like to thank my mentor, Simon McCallum, for always
challenging me and pushing me toward new technologies. I would
also like to thank my nephew and niece for being my motivation and
allowing me to stay a kid forever; I love you guys! Last but not least,
I would like to thank my partner in crime, Sara, for her support and
striving for perfection.

www.it-ebooks.info

http://www.it-ebooks.info/

José Rodriguez-Rivas is a young game developer. He loves to dream big about
his future, often picturing himself as a head developer for a huge game company
that he started. He first started developing games using RPG Maker VX Ace when he
was in the eighth grade. As soon as he got into high school, he wanted to learn how
to actually program a video game. He first learned Java with the libGDX framework,
which allows him to port his games to both PC and Android. He is really into web
design as well, and has designed two websites, one for his own company, Tiny
Country Games (https://tinycountrygames.com/), and another for the Young
Entrepreneurs Association of California, YEACAL (http://yeacal.org/). He enjoys
learning new things, even if they don't directly relate to game development. For
example, he likes to practice instruments such as the guitar, ukulele, and electric bass.

First of all, I would thank my computer science teacher, Mark
Sheinberg, for always pushing me to improve my coding skills and
learn new things. I would like to thank my best friend, Charli-Anne
Hanna-Baker, for always supporting my work and keeping my
morale high with her amazing attitude. Annika Pašeta, thank you
for giving me the opportunity of being the webmaster of YEACAL,
which inspired me to learn ASP.NET and C#. Last but not least,
I would like to thank my family for their constant support and love.

www.it-ebooks.info

https://tinycountrygames.com/
http://yeacal.org/
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[i]

Table of Contents
Preface vii
Chapter 1: Player 1 UP 1

A closer look at the games 2
Tappy Defender 2
Tough retro platformer 3
Asteroids simulator 5

Setting up your development environment 6
Installing the JDK 7
Installing Android Studio 10

Summary 12
Chapter 2: Tappy Defender – First Step 13

Planning the first game 13
Backstory 13
The game mechanics 14
Rules for the game 15
The design 15

Control 15
Model 16
View 16
Design pattern reality check 16

The game code structure 16
The Android Activity lifecycle 16

The Android Studio file structure 18
Building the home screen 19

Creating the project 19
What we did 20

Building the home screen UI 21
What we did 24

Coding the functionality 24

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Creating GameActivity 27
What we did 27

Configuring the AndroidManifest.xml file 27
What we did 28

Coding the game loop 28
Building the view 28

Creating a new class for the view 29
What we did 30
Structuring the class code 30

The game activity 32
The PlayerShip object 34
Drawing the scene 37

Plotting and drawing 37
Drawing PlayerShip 38

The Canvas and Paint objects 39
Controlling the frame rate 41

Deploying the game 41
Debugging on an Android device 41

Summary 43
Chapter 3: Tappy Defender – Taking Flight 45

Controlling the spaceship 45
Detecting touches 46
Adding boosters to the spaceship 47
Detecting the screen resolution 50

Building the enemies 52
Designing the enemy 53
Spawning the enemy 53
Making the enemy think 55

The thrill of flight – scrolling the background 58
Things that go bump – collision detection 62

Collision detection options 62
Rectangle intersection 62
Radius overlapping 63
The crossing number algorithm 65

Optimizations 65
Multiple hitboxes 65
Neighbor checking 65

Best options for Tappy Defender 66
Summary 70

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 4: Tappy Defender – Going Home 71
Displaying a HUD 71
Implementing the rules 74
Ending the game 78

Restarting the game 81
Adding sound FX 82

Generating the FX 82
The SoundPool class 85
Coding the sound FX 85

Adding persistence 87
Iteration 89

Multiple different enemy graphics 89
An exercise in balance 91
Format time 96
Handle the back button 97

The finished game 98
Summary 98

Chapter 5: Platformer – Upgrading the Game Engine 99
The game 100

The backstory 100
The game mechanics 101
Rules for the game 101

Upgrading the game engine 101
The platform activity 101
Locking the layout to landscape 104
The PlatformView class 105

The basic structure of PlatformView 106
The GameObject class 109
The view through a viewport 116
Creating the levels 122
The enhanced update method 131
The enhanced draw method 132

Summary 135
Chapter 6: Platformer – Bob, Beeps, and Bumps 137

The SoundManager class 137
Introducing Bob 141
Multiphase collision detection 150
Player input 157
Animating Bob 165
Summary 171

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Chapter 7: Platformer – Guns, Life, Money, and the Enemy 173
Ready aim fire 173

Pickups 180
The drone 190
The guard 195

Summary 203
Chapter 8: Platformer – Putting It All Together 205

Bullet collision detection 205
Adding some fire tiles 207
Eye candy 211

The new platform tiles 212
The new scenery objects 218
Scrolling parallax backgrounds 226
Pause menu with moveable viewport 234
Levels and game rules 236

Traveling between levels 236
The level designs 242

The cave 243
The city 244
The forest 245
The mountains 246
The HUD 247

Summary 248
Chapter 9: Asteroids at 60 FPS with OpenGL ES 2 251

Asteroids simulator 252
The game controls 252
Rules for the game 252

Introducing OpenGL ES 2 252
Why use it and how does it work? 252
What is neat about Version 2? 253
How we will use OpenGL ES 2? 254

Preparing OpenGL ES 2 255
Locking the layout to landscape 255
Activity 255
The view 257
A class to manage our game 258
Managing simple shaders 259
The game's main loop – the renderer 264

Building an OpenGL-friendly, GameObject super class 271
The spaceship 281
Drawing at 60 + FPS 283
Summary 285

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Chapter 10: Move and Draw with OpenGL ES 2 287
Drawing a static game border 287
Twinkling stars 290
Bringing the spaceship to life 293
Rapid fire bullets 298
Reusing existing classes 301

Adding the SoundManager class 302
Adding the InputController class 304

Drawing and moving the asteroids 309
Scores and the HUD 314

Adding control buttons 315
Tally icons 319
Life icons 323

Declaring, initializing, and drawing the HUD objects 326
Summary 328

Chapter 11: Things That Go Bump – Part II 329
Planning for collision detection 329

Colliding with the border 330
The first phase of border collision detection 330

Colliding with an asteroid 331
The crossing number 331
The first phase and overview of asteroid collision detection 332

The CollisionPackage class 333
Adding collision packages to the objects and making them accessible 336

The CD class outline 341
Implementing radius overlapping for asteroids and ships 342
Implementing rectangle intersection for the border 343

Performing the checks 344
Helper methods 344

Destroying a ship 344
Destroying an asteroid 345

Testing for collisions in update() 346
Precise collision detection with the border 350
Precise collision detection with an asteroid 352
Finishing touches 357
Summary 358

Index 359

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[vii]

Preface
Making games is addictive and very rewarding, it can be hard to stop once you get
started. The problem comes when we reach a stumbling block because we don't
know how to implement a feature, or perhaps integrate it into our game. This book
is a whirlwind tour of as many Android 2D gaming features that can possibly be
squeezed into 11 chapters.

Every line of the code used to build three games of increasing difficulty is shown in
the text of the book and explained in a straightforward manner.

Steadily build up to implement a flexible and advanced game engine that uses
OpenGL ES 2 for fast smooth frame rates. This is achieved by starting with a simple
game and gradually increasing the complexity of the three complete games built step
by step.

Implement cool features like sprite sheet character animation and scrolling parallax
backgrounds. Design and implement genuinely challenging and playable platform
game levels.

Learn to code both basic and advanced collision detection. Make simple the math
behind 2D rotation, velocity, and collision. Run your game designs at 60 frames per
second or better.

Process multi-touch screen input. Implement a multitude of other game features like
pickups, firing weapons, HUDs, generating and playing sound FX, scenery, level
transition, high scores, and more.

What this book covers
Chapter 1, Player 1 UP, is an introduction to the three cool games that we will build.
We will also get the development environment set up.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[viii]

Chapter 2, Tappy Defender – First Step, is about planning the game project and getting
the code for our first game engine up and running. We will implement a main game
loop, control the frame rate, and draw to the screen.

Chapter 3, Tappy Defender – Taking Flight, teaches us to add lots of new objects and
some features like player controls, enemies, and scrolling stars in the background.
In the Things that go bump – collision detection section, we will discuss our collision
detection options and implement an efficient solution for this game.

Chapter 4, Tappy Defender – Going Home, completes the game, including adding high
scores, victory conditions, sound FX, and more.

Chapter 5, Platformer – Upgrading the Game Engine, provides a good understanding of
what is needed in a simple game engine. We can quickly learn about and build a more
advanced and flexible engine, suitable for a really tough, retro 2D platform game.

Chapter 6, Platformer – Bob, Beeps, and Bumps, uses our new game engine to add a class
to manage the sound FX and a class to implement the more complex player controls
that are required by a game of this type. We can then make Bob, our playable
character, an animated running, jumping hero.

Chapter 7, Platformer – Guns, Life, Money, and the Enemy, continues the subject of the
previous two chapters; we add a ton of features in this one. We will add collectible
pick-ups and power-ups, a deadly homing enemy, and a patrolling guard. Of course
with all this, Bob is going to need a machine gun to defend himself, and he gets one!

Chapter 8, Platformer – Putting It All Together, is where our platform game comes
to life. We will add lots of new platform tile types and scenery objects, multiple
scrolling parallax backgrounds, collision detection, and a teleporting system so that
Bob can travel between the levels of the game. Using our range of tile types, scenery
objects, and backgrounds, we will implement four playable levels linked together by
the teleporting system.

Chapter 9, Asteroids at 60 FPS with OpenGL ES 2, contains the final project of this book,
which is an introduction to 2D games with the super fast OpenGL graphics library.
In this chapter, we will quickly learn how to draw with OpenGL ES 2 and integrate
the drawing system into our game engine. By the end of the chapter, we will have a
working engine that draws an Asteroids-style spaceship to the screen.

Chapter 10, Move and Draw with OpenGL ES 2, is where we will quickly integrate
our sound and control systems from the previous project. Then, we can add a game
border, twinkling star system, spinning asteroids, a neat HUD, progressively difficult
levels, and a rapid fire gun to the player's spaceship.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[ix]

Chapter 11, Things That Go Bump – Part II, completes the Asteroids game by adding
the collision detection. The math required to detect collisions with the irregularly-
shaped spinning asteroids is made simple and implemented into the game engine.
By the end of this chapter, you will have the third and final fully playable game.

What you need for this book
Any recent and free version of Eclipse or Android Studio running on any of the
major operating systems can use the code in this book.

Android Studio is the recommended development tool, and at time of publication,
the minimum system requirements are:

For Windows:

• Microsoft Windows 8/7/Vista/2003 (32 or 64-bit)
• 2 GB RAM minimum, 4 GB RAM recommended
• 400 MB hard disk space
• At least 1 GB for Android SDK, emulator system images, and caches
• 1280 x 800 minimum screen resolution
• Java Development Kit (JDK) 7
• Optional for accelerated emulator: Intel processor with support for Intel VT-

x, Intel EM64T (Intel 64), and Execute Disable (XD) Bit functionality

For Mac OS X:

• Mac OS X 10.8.5 or higher, up to 10.9 (Mavericks)
• 2 GB RAM minimum, 4 GB RAM recommended
• 400 MB hard disk space
• At least 1 GB for Android SDK, emulator system images, and caches
• 1280 x 800 minimum screen resolution
• Java Runtime Environment (JRE) 6
• Java Development Kit (JDK) 7
• Optional for accelerated emulator: Intel processor with support for Intel VT-

x, Intel EM64T (Intel 64), and Execute Disable (XD) Bit functionality

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[x]

On Mac OS, run Android Studio with Java Runtime Environment (JRE) 6 for
optimized font rendering. You can then configure your project to use JDK 6 or JDK 7.

For Linux:

• GNOME or KDE desktop
• GNU C Library (glibc) 2.15 or later
• 2 GB RAM minimum, 4 GB RAM recommended
• 400 MB hard disk space
• At least 1 GB for Android SDK, emulator system images, and caches
• 1280 x 800 minimum screen resolution
• Oracle Java Development Kit (JDK) 7

Tested on Ubuntu 14.04, Trusty Tahr (64-bit distribution capable of running 32-bit
applications).

Who this book is for
The book is best suited for existing Android or Java programmers, who want to
adapt their skills to make exciting Android games.

The book is also for readers who might have no Android, game programming, or
even Java experience, but a good understanding of object-oriented programming is
assumed.

Also, a determined programming beginner with at least some OOP experience can
follow along and build all the projects, because of the step-by-step approach of the
book. This book will also be ideally suited for readers who have completed Learning
Java By Building Android Games.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We will first add all the classes, and then update LevelManager in the usual three
places."

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[xi]

A block of code is set as follows:

if (lm.isPlaying()) {
 // Reset the players location as
 // the world centre of the viewport
 //if game is playing
 vp.setWorldCentre(lm.gameObjects.get(lm.playerIndex)
 .getWorldLocation().x,
 lm.gameObjects.get(lm.playerIndex)
 .getWorldLocation().y);

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

 //Has player fallen out of the map?
 if (lm.player.getWorldLocation().x < 0 ||
 lm.player.getWorldLocation().x > lm.mapWidth ||
 lm.player.getWorldLocation().y > lm.mapHeight) {

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "In the
Create New Project window shown next, we need to enter some basic information
about our app."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.it-ebooks.info

www.packtpub.com/authors
http://www.it-ebooks.info/

Preface

[xii]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/0122OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/0122OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/0122OS_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Preface

[xiii]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[1]

Player 1 UP
The terminology used by old arcade and pinball machines "1 UP" was a kind of
notice to the players that they were playing (up) now. It was also used to indicate
earning an extra life. Are you ready to build three great games?

We will build three cool games together. Every line of code for these three games
is shown in this book; you will never have to refer to the code files to see what is
going on. Also, the entire file set required to build all three games is included in the
download bundle that can be obtained from the books page on the Packt website.

All the code, Android manifest files, and the graphical and audio assets are included
in the download as well. The three cool games are progressively more challenging to
implement.

The first project uses a simple but functional game engine that clearly demonstrates
the essentials of a main game loop. The game will be fully working with the home
screen, high scores, sound, and animation. But by the end of the project, as we add
features and try to balance the game play, we will soon see that we need more
flexibility in order to add features.

In the second project, a hard retro platformer, we will see how we can use a simple
and flexible design to build a relatively fast and very flexible game engine, which is
extendable and reusable. This flexibility will allow us to make quite a complex and
well-featured game. This game will have multiple levels, different environments,
and more. This in turn will highlight the need for being able to draw graphics more
quickly. That leads us on to the third project.

In the third project, we will build an Asteroids-like game called Asteroids simulator.
Although the game won't have as many features as the previous project, it will
feature the super-smooth drawing of hundreds of animated game objects running
at over 60 frames per second. We will achieve this by learning about and using the
Open Graphics Library for Embedded Systems (OpenGL ES 2).

www.it-ebooks.info

http://www.it-ebooks.info/

Player 1 UP

[2]

By the end of this book, you will have a whole repertoire of design ideas, techniques,
and code templates that you can use in your future games. By seeing the strengths
and weaknesses of the different ways of making games on Android, you will be able
to successfully design and build games in the most appropriate way for your next
big game.

A closer look at the games
Here is a quick glimpse at the three projects.

Tappy Defender
Fly Flappy Bird-style with one finger to reach your home planet, while avoiding
multiple enemies. Features include:

• Basic animation
• Home screen

• Collision detection
• High scores
• Simple HUD

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[3]

• One-finger touch screen controls

Tough retro platformer
This is a genuinely tough-to-beat retro style platform game. We have to guide
Bob from the underground fire caves through the city, forest, and finally to the
mountains. It has four challenging levels. Features include:

• A more advanced, flexible game engine
• More advanced "sprite sheet" character animation
• A level builder engine to design your levels in text format
• Multiple scrolling parallax backgrounds
• Transition between levels

www.it-ebooks.info

http://www.it-ebooks.info/

Player 1 UP

[4]

• A more advanced HUD

• Add loads of extra diverse levels
• Sound manager to easily manage sound FX
• Pickups
• An upgradeable gun
• Seek-and-destroy enemy drones
• Simple AI scripting for patrolling enemy guards
• Hazards such as fire pits

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[5]

• Scenery objects to create atmosphere

Asteroids simulator
This is a classic shooter with retro vector-graphics style visuals. It involves clearing
waves of smoothly animated spinning asteroids with a rapid fire gun. Features
include:

• 60 frames per second or better, even on old hardware
• An introduction to OpenGL ES 2
• Shooter with waves of progressive difficulty

www.it-ebooks.info

http://www.it-ebooks.info/

Player 1 UP

[6]

• Advanced multiphase collision detection

Setting up your development
environment
All the code in this book and the download bundle will work in your favorite
Android IDE. However, I found the latest version of Android Studio exceptionally
friendly to use and the code was written and tested in it as well.

If you don't currently use Android Studio, I encourage you to give it a try. Here is a
quick overview of how to get up and running quickly. This guide includes steps to
install the Java JDK in case you are completely new to Android development.

If you already have your preferred development environment ready
to go then jump straight to Chapter 2, Tappy Defender – First Step.

The first thing we need to do is prepare your PC to develop for Android using Java.
Fortunately, this is made quite simple for us.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

If you are learning on Mac or Linux everything in this book will still
work. The next two tutorials have Windows-specific instructions
and screenshots. However, it shouldn't be too difficult to vary the
steps slightly to suit Mac or Linux.

All we need to do is:

1. Install the Java Development Kit (JDK), which allows us to develop in Java.
2. Then install Android Studio to make Android development fast and easy.

Android Studio uses the JDK and some other Android-specific tools that get
automatically installed when we install Android Studio.

Installing the JDK
The first thing we need to do is get the latest version of the JDK. To complete this
guide, perform the following instructions:

1. We need to be on the Java website, so visit:
http://www.oracle.com/technetwork/java/javase/downloads/index.
html.

2. Find the three buttons shown here and click on the one that says JDK that
is highlighted in the following image. They are on the right-hand side of the
web page. Then, click on the Download button under the JDK option:

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.it-ebooks.info/

Player 1 UP

[8]

3. You will be taken to a page that has multiple options to download the JDK.
In the Product/File Description column, you need to click the option that
matches your operating system. Windows, Mac, Linux, and some other less
common options are all listed.

4. A common question asked here is, do I have 32- or 64-bit windows? To find
out, right-click on your My Computer icon (This PC on Windows 8), click
on the Properties option, and look under the System heading at the System
type entry:

5. Click on the somewhat hidden Accept License Agreement checkbox:

6. Now, click on download for your OS and type as previously determined.
Wait for the download to finish.

7. In your downloads folder, double-click on the file you just downloaded. The
latest version at the time of writing for a 64-bit Windows PC was jdk-8u5-
windows-x64. If you are using Mac/Linux or have a 32-bit OS, your filename
will vary accordingly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

8. In the first of several install dialogs, click on the Next button and you will see
the following dialog box:

9. Accept the defaults shown in the previous image by clicking on Next. In the
next dialog box, you can accept the default install location by clicking on
Next.

10. Next up is the last dialog of the Java installer; for this click on Close.

The JDK is now installed. Next, we will make sure that Android
Studio is able to use the JDK.

11. Right-click on your My Computer icon (This PC on windows 8) and click on
Properties | Advanced system settings | Environment Variables... | New...
(under System variables, not under User variables). Now, you can see the
New System Variable dialog box:

www.it-ebooks.info

http://www.it-ebooks.info/

Player 1 UP

[10]

12. Type JAVA_HOME for Variable name: and enter C:\Program Files\
Java\jdk1.8.0_05 for the Variable value: field. If you installed the JDK
somewhere else, then the file path you enter in the Variable value: field
will need to point to wherever you put it. Your exact file path will likely
have a different ending to match the latest version of Java at the time you
downloaded it.

13. Click on OK to save your new settings.
14. Now under System variables, click on Path and then click on the Edit...

button. At the very end of the text in the Variable value: field, enter the
following text to add our new variable to the file paths that Windows will
use, ;JAVA_HOME. Be sure not to miss the semicolon from the beginning.

15. Click on OK to save the updated Path variable.
16. Now, click on OK again to clear the Advanced system settings dialog box.

The JDK is now installed on our PC.

Installing Android Studio
Without delay, let's get Android Studio installed, and then we can begin our first
game project. Visit:

https://developer.android.com/sdk/index.html

1. Click on the button labeled DOWNLOAD ANDROID STUDIO FOR
WINDOWS to start the Android Studio download. This will take you to
another web page with a very similar looking button to the one you just
clicked on.

2. Accept the license by checking the checkbox and commence the download
by clicking the button labeled DOWNLOAD ANDROID STUDIO FOR
WINDOWS and wait for the download to complete.

3. In the folder you just downloaded Android Studio to, right-click on the
android-studio-bundle-135.12465-windows.exe file and click on Run as
administrator. The end of your filename will vary depending on the version
of Android Studio and your operating system.

4. When asked if you want to allow the following program from an unknown
publisher to make changes to your computer, click on Yes. On the next
screen, click on Next.

5. On the screen pictured here, you can choose which users of your PC can use
Android Studio. Choose which is right for you as all options will work, and
then click on Next:

www.it-ebooks.info

https://developer.android.com/sdk/index.html
http://www.it-ebooks.info/

Chapter 1

[11]

6. In the next dialog, leave the default settings and then click on Next.
7. On the Choose start menu folder dialog box leave the defaults and click on

Install.
8. On the Installation complete dialog, click on Finish to run Android Studio

for the first time.
9. The next dialog is for users who have already used Android Studio, so

assuming you are first-time user, select the I do not have a previous version
of Android Studio or I do not want to import my settings checkbox. Then
click on OK:

That was the last piece of software we needed. We will begin to use Android Studio
straight away in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Player 1 UP

[12]

Summary
This chapter was deliberately kept as short as possible, so we can get on with
building some games. We will do this now.

www.it-ebooks.info

http://www.it-ebooks.info/

[13]

Tappy Defender – First Step
Welcome to the first game, which we will learn about in three chapters. In this
chapter, we will closely examine the goals for the finished product. It helps a lot
when building a game, if we know exactly what we are trying to achieve.

We can then look at the structure of our code, including an approximate design
pattern that we will be adhering to. Then, we will put together the code skeleton of
our first game engine. Finally, to finish the chapter, we will draw our first real object
from the game and animate it on the screen.

We will then be ready for Chapter 3, Tappy Defender – Taking Flight, where we can
make really fast progress before completing our first game in Chapter 4, Tappy
Defender – Going Home.

Planning the first game
In this section, we will flesh out exactly what our game will be. The backstory; who
is our hero and what are they trying to achieve? The game mechanics; what will the
player actually do? What buttons will he press and in what way is that a challenge or
fun thing to do? Then, we will look at the rules. What constitutes victory, death, and
progress? Finally, we will get technical and start to examine how we will actually
build the game.

Backstory
Valerie has been defending the far outposts of humanity since the early '80s. Her
brave exploits were originally immortalized in the 1981 arcade classic, Defender.
However, after over 30 years on the front line, she is retiring and it is time to begin
the journey home. Unfortunately, in a recent skirmish, her ship's engines and
navigation systems were severely damaged. Therefore, now she must fly all the way
home using only her boost thruster.

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – First Step

[14]

This means that she must fly her ship by simultaneously thrusting up and forward,
kind of bouncing really, while avoiding enemies who try to crash into her. In a recent
communication with Earth, Valerie was heard to claim that it was, "Like trying to fly
a lame bird." This is some concept art of Valerie in her damaged ship because it helps
to visualize our game as early as possible.

Now that we have learned a little bit about our hero and her predicament, we take a
closer look at the mechanics of the game.

The game mechanics
Mechanics are the key actions that a player must make and become good at, to be
able to beat the game. When designing a game, you can rely on tried and tested ideas
for mechanics or you can invent your own. In Tappy Defender, we will be using a
mechanic where the player taps and holds the screen to boost the ship.

This boosting will raise the ship up the screen, but will also make the ship speed up
and therefore be more vulnerable. When the player removes their finger, the boost
engine will cut out and the ship will fall downward and decelerate, thus making the
ship slightly less vulnerable. Therefore, a very fine and masterful balance of boosting
and not boosting is required to survive.

Tappy Defender is of course heavily inspired by Flappy Bird and a multitude of
similar games that followed its success.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[15]

Instead of a how-far-can-I-get scoring system like Flappy Bird, Tappy Defender will
have a goal of reaching "home". Then, the player can replay the game multiple times
in order to try and beat their fastest time. Of course to go faster, the player must
boost more frequently and put Valerie in greater peril.

In the unlikely event you have never played or seen Flappy Bird, it is
well worth spending 5 minutes having a play with this type of game
now. You can download one of the many Flappy Bird inspired apps
from the Google Play store:
https://play.google.com/store/search?q=flappy%20
bird&c=apps

Rules for the game
Here, we will define things which balance the game and make it fair and consistent
for the player:

• The player's ship is much tougher than the enemy ships. This is because the
player's ship has shields. Each time the player collides with an enemy, the
enemy is instantly destroyed, but the player loses a shield. The player has
three shields.

• The player will need to fly a set number of kilometers to reach home.
• Every time the player reaches home, they win the game. If their time was the

fastest, they also get a new fastest time, like a high score.
• Enemies will spawn at a random height on the far right of the screen and fly

toward the player at a random speed.

The player is always positioned on the far left of the screen, but boosting will mean
the enemies approach more quickly.

The design
We will use a loose design pattern, where we will separate our code based on a
control part, model part, and view. This is how we will separate our code into three
areas.

Control
This is the part of our code that will control all other parts. It will decide when to
show the view, it will initialize all our game objects from the model, and it will
prompt decisions based on the states of data to take place within the model.

www.it-ebooks.info

https://play.google.com/store/search?q=flappy%20bird&c=apps
https://play.google.com/store/search?q=flappy%20bird&c=apps
http://www.it-ebooks.info/

Tappy Defender – First Step

[16]

Model
The model is our game data and logic. What do the ships look like? Where on the
screen are our ships? How fast are they going, and so on. Furthermore, the model
part of our code is the intelligence system for each of our game objects. Although
our enemies in this game don't have sophisticated AI, they will know and decide for
themselves how fast they are going, when to respawn and more.

View
The view is exactly what it sounds like. It is the part of our code that will do the
actual drawing based on the state of the models. It will draw when the control part
of our code tells it. It will not have any influence over the game objects. For example,
the view will not decide where an object is or even what it looks like. It just draws
and then hands control back to the control code.

Design pattern reality check
In reality, the separation is not as clear as the discussion suggests. In fact, the code
for drawing and control is within the same class. However, you will see that the logic
of drawing and controlling is separate within that class.

By separating our game into these three parts, we will see how we simplify the
development and avoid getting tied up in messy code that constantly expands as we
add new features to our game.

Let's look more closely at where this pattern fits in with our code.

The game code structure
First of all, we must take account of the system we are working within. In this case, it
is the Android system. If you have been making Android apps for a while, you may
be wondering where this pattern stuff fits in with the Android Activity lifecycle. If
you are new to Android, you might ask what the Activity lifecycle is.

The Android Activity lifecycle
The Android Activity lifecycle is the framework we must work within to make any
type of Android app. There is a class called Activity that we must derive from and
is an entry point to our app. In addition, we need to be aware that this class, that our
game is an object of, also has some methods we can override. These methods control
the lifecycle of our app.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[17]

When an app is started by the user, our Activity object is created and a number of
the methods that we can override are called in sequence. This is what happens.

When the Activity object is created, three methods are called in sequence;
onCreate(), onStart(), and onResume(). At this point, the app is now running. In
addition, when the user quits an app or the app is interrupted, perhaps by a phone
call, the onPause method is called. The user may decide, perhaps after completing
their phone call, to return to the app. If this happens, the onResume method is called,
following which the app is running again.

Should the user not return to the app or the Android system decides that it wants
the system resources for something else, two further methods are called to clean up.
First onStop(), and then onDestroy(). The app is now destroyed and any attempt
to return to the game again will result in the Activity lifecycle starting from the
beginning.

All we have to do as game programmers is be aware of this lifecycle and observe a
few rules of good housekeeping. We will implement and explain the rules of good
housekeeping as we proceed.

The Android Activity lifecycle is much more complex and far more
nuanced than I have just explained it. However, we know everything
we need to get programming our first game. If you want to know
more please have a look at this article on the Android developer's
web site at:
http://developer.android.com/reference/android/app/
Activity.html

Once we have catered for the Android Activity lifecycle, the core methods of our
class representing the control part of the pattern will be as simple as this:

1. Update the state of our game objects.
2. Draw the game objects based on their state.
3. Pause to lock the frame rate.
4. Get player input. Actually because parts 1, 2, and 3 happen in a thread, this

part can happen at any time.
5. Repeat.

One last bit of preparation, before we start to build our game for real.

www.it-ebooks.info

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://www.it-ebooks.info/

Tappy Defender – First Step

[18]

The Android Studio file structure
The Android system is quite particular about where we put our class files, including
Activity and where in the file hierarchy we place our assets like sound files and
graphics.

Here is a really quick overview of where we will be putting everything. You don't
need to memorize this, as we will remind ourselves of the correct folder while
adding assets. We will step through the activity/class creation process the first few
times we need to do it.

As a heads up, here is an annotated diagram of what your Android Studio project
explorer will look like by the end of the Tappy Defender project:

Now, we can actually start building Tappy Defender.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[19]

Building the home screen
Since we have done all the planning and preparation, we can get started with
the code.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.
To use the code files, you will still need to create an Android Studio
project. In addition, you will need to change the package name in the
very first line of code of each of the JAVA files. Change the package
name to match the package name of the project you created. Finally,
you will need to make sure that any assets such as images or sound
files are placed into the appropriate folder in the project. All the
required assets for each project are supplied in the download bundle.

Creating the project
Fire up Android Studio and create a new project by following these steps. All the
files to get the project to where we will be, by the end of this chapter, are in the
download bundle in the Chapter2 folder.

1. On the Welcome to Android Studio dialog, click on Start a new Android
Studio project.

2. In the Create New Project window shown next, we need to enter some
basic information about our app. These bits of information will be used by
Android Studio to determine the package name.

In the following image, you can see the Edit link where
you can customize the package name if required.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Tappy Defender – First Step

[20]

3. If you will be copy/pasting the supplied code into your project, then use C1
Tappy Defender for the Application name field and gamecodeschool.com
in the Company Domain field as shown in the following screenshot:

4. Click on the Next button when you're ready. When asked to select the form
factors, your app will run on, we can accept the default settings (Phone and
Tablet). So click on Next again.

5. On the Add an activity to mobile dialog, just click on Blank Activity
followed by the Next button.

6. On the Customize the Activity dialog, again we can accept the default
settings because MainActivity seems like a good name for our main
Activity. So click on the Finish button.

What we did
Android Studio has built the project and created a number of files, most of which
we will see and edit during the course of building this game. As mentioned earlier,
even if you are just copying and pasting the code, you need to go through this step
because Android Studio is doing things behind the scenes to make our project work.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[21]

Building the home screen UI
The first and simplest part of our Tappy Defender game is the home screen. All we
need is a neat picture with a scene about the game, a high score, and a button to start
the game. The finished home screen will look a bit like this:

When we built the project, Android Studio opens up two files ready for us to edit.
You can see them as tabs in the following Android Studio UI designer. The files (and
tabs) are MainActivity.java and activity_main.xml:

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – First Step

[22]

The MainActivity.java file is the entry point to our game, and we will see this in
more detail soon. The activity_main.xml file is the UI layout that our home screen
will use. Now, we can go ahead and edit the activity_main.xml file, so it actually
looks like our home screen should.

1. First of all, your game will be played with the Android device in landscape
mode. If we change our UI preview window to landscape, we will see your
progress more accurately. Look for the button shown in the next image. It is
just preceding the UI preview:

2. Click on the button shown in the preceding screenshot, and your UI preview
will switch to landscape like this:

3. Make sure activity_main.xml is open by clicking on its tab.
4. Now, we will set in a background image. You can use your own or mine

from Chapter2/drawable/background.jpg in the download bundle. Add
your chosen image to the drawable folder of the project in Android Studio.

5. In the Properties window of the UI designer, find and click on the
background property as shown in the next image:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

6. Also, in the previous image the button labelled ... is outlined. It is just to the
right of the background property. Click on that ... button and browse to and
select the background image file that you will be using.

7. Next, we need a TextView widget that we will use to display the high
score. Note that there is already a TextView widget on the layout. It says
Hello World. You will modify this and use it for our high score. Left click
on it and drag the TextView to where you want it. You can copy me if you
intend using the supplied background or put it where it looks best with your
background.

8. Next, in the Properties window, find and click on the id property. Enter
textHighScore. Type it exactly as shown because when we write some Java
code in a later tutorial, we will refer to this ID in order to manipulate it, to
show the player's fastest time.

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – First Step

[24]

9. You can also edit the text property to say High Score: 99999 or similar so
that the TextView looks the part. However, this isn't necessary because your
Java code will take care of this later.

10. Now, we will drag a button from the widget palette as shown in the
following screenshot:

11. Drag it to where it looks good on your background. You can copy me if using
the supplied background or put it where it looks best with your background.

What we did
We now have a cool background with neatly arranged widgets (a TextView and a
Button) for your home screen. We can add functionality via Java code to the Button
widget next. Revisit the TextView for the player's high score in Chapter 4, Tappy
Defender – Going Home. The important point is that both the widgets have been
assigned a unique ID that we can use to reference and manipulate in your Java code.

Coding the functionality
Now, we have a simple layout for our game home screen. Now, we need to add the
functionality that will allow the player to click on the Play button to start the game.

Click on the tab for the MainActivity.java file. The code that was automatically
generated for us is not exactly what we need. Therefore, we will start again as it is
simpler and quicker than tinkering with what is already there.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

Delete the entire contents of the MainActivity.java file except the package name
and enter the following code in it. Of course, your package name may be different.

package com.gamecodeschool.c1tappydefender;

import android.app.Activity;
import android.os.Bundle;

public class MainActivity extends Activity{

 // This is the entry point to our game
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 //Here we set our UI layout as the view
 setContentView(R.layout.activity_main);

 }
}

The mentioned code is the current contents of our main MainActivity class and the
entry point of our game, the onCreate method. The line of code that begins with
setContentView... is the line that loads our UI layout from activity_main.xml
to the players screen. We can run the game now and see our home screen, but let's
make some more progress, following which we will look at how we run the game on
a real device at the end of the chapter.

Now, let's handle the Play button on our home screen. Add the two highlighted
lines of the following code into the onCreate method just after the call to
setContentView(). The first new line creates a new Button object and gets a
reference to Button in our UI layout. The second line is the code that listens for clicks
on the button.

//Here we set our UI layout as the view
setContentView(R.layout.activity_main);

// Get a reference to the button in our layout
final Button buttonPlay =
 (Button)findViewById(R.id.buttonPlay);
// Listen for clicks
buttonPlay.setOnClickListener(this);

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – First Step

[26]

Note that we have a few errors in our code. We can resolve these errors by holding
down the Alt keyboard key and then pressing Enter. This will add an import
directive for the Button class.

We still have one error. We need to implement an interface so that our code listens to
the button clicks. Modify the MainActivity class declaration as highlighted:

public class MainActivity extends Activity
 implements View.OnClickListener{

When we implement the onClickListener interface, we must also implement
the onClick method. This is where we will handle what happens when a button
is clicked. We can automatically generate the onClick method by right-clicking
somewhere after the onCreate method, but within the MainActivity class, and
navigating to Generate | Implement methods | onClick(v:View):void. Or just add
the given code.

We also need to have Android Studio add another import directive for Android.
view.View. Use the Alt | Enter keyboard combination again.

We can now scroll to near the bottom of the MainActivity class and see that
Android Studio has implemented an empty onClick method for us. We should have
no errors in your code at this point. Here is the onClick method:

@Override
public void onClick(View v) {
 //Our code goes here
}

As we only have one Button object and one listener, we can safely assume that any
clicks on our home screen are the player pressing our Play button.

Android uses the Intent class to switch between activities. As we need to go to a
new activity when the Play button is clicked, we will create a new Intent object and
pass in the name of our future Activity class, GameActivity to its constructor. We
can then use the Intent object to switch activities. Add the following code to the
body of the onClick method:

// must be the Play button.
// Create a new Intent object
Intent i = new Intent(this, GameActivity.class);
// Start our GameActivity class via the Intent
startActivity(i);
// Now shut this activity down
finish();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

Once again, we have errors in our code because we need to generate a new import
directive, this time for the Intent class so use the Alt | Enter keyboard combination
again. We still have one error in our code. This is because our GameActivity class
does not exist yet. We will now solve this problem.

Creating GameActivity
We have seen that when the player clicks on the Play button, main activity will
close and game activity will begin. Therefore, we need to create a new activity called
GameActivity that will be were your game actually executes.

1. From the main menu, navigate to File | New | Activity | Blank Activity.
2. In the Customize the Activity dialog, change the Activity Name field to

GameActivity.
3. We can accept all the other default settings from this dialog, so click on

Finish.
4. As we did with your MainActivity class, we will code this class from

scratch. Therefore, delete the entire code content from GameActivity.java.

What we did
Android Studio has generated two more files for us and done some work behind
the scenes that we will investigate soon. The new files are GameActivity.java and
activity_game.xml. They are both automatically opened for us in two new tabs, in
the same place as the other tabs above the UI designer.

We will never need activity_game.xml because we will build a dynamically
generated game view, not a static UI. Feel free to close that now or just ignore it. We
will come back to the GameActivity.java file, when we start to code our game for
real, later in the chapter in the Coding the game loop section.

Configuring the AndroidManifest.xml file
We briefly mentioned that when we create a new project or a new activity, Android
Studio does more than just creating two files for us. This is why we create new
projects/activities the way we do.

One of the things going on behind the scenes is the creation and modification of the
AndroidManifest.xml file in the manifests directory.

This file is required for our app to work. Also, it needs to be edited to make our app
work the way we want it to. Android Studio has automatically configured the basics
for us, but we will now do two more things to this file.

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – First Step

[28]

By editing the AndroidManifest.xml file, we will force both of our activities to run
with a full screen, and we will also lock them to a landscape layout. Let's make these
changes here:

1. Open the manifests folder now, and double click on the AndroidManifest.
xml file to open it in the code editor.

2. In the AndroidManifest.xml file, find the following line of code:
android:name=".MainActivity"

3. Immediately following it, type or copy and paste these two lines to make
MainActivity run full screen and lock it in the landscape orientation:
android:theme="@android:style/Theme.NoTitleBar.Fullscreen"
android:screenOrientation="landscape"

4. In the AndroidManifest.xml file, find the following line of code:
android:name=".GameActivity"

5. Immediately following it, type or copy and paste these two lines to make
GameActivity run full screen and lock it in the landscape orientation:

android:theme="@android:style/Theme.NoTitleBar.Fullscreen"
android:screenOrientation="landscape"

What we did
We have now configured both activities from our game to be full screen. This
presents a much more pleasing appearance to our player. In addition, we have
disabled the player's ability to affect our game by rotating their Android device.

Coding the game loop
We said that we will not be using a UI layout for our game screen, but instead a
dynamically drawn view. This is where the view of our pattern comes in. Let's create
a new class to represent our view, then we will put in the fundamental building
blocks of our Tappy Defender game.

Building the view
We will leave our two activity classes alone for a while so that we can take a look at
our class that will represent the view of our game. As we discussed at the start of this
chapter, the view and the controller aspects will be part of the same class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

The Android API provides us with an ideal class for our requirements. The android.
view.SurfaceView class not only provides us a view that is designed for drawing
pixels, text, lines, and sprites onto, but also enables us to quickly handle player input
as well.

As if this wasn't useful enough, we can also spawn a thread by implementing the
runnable interface allowing our main game loop to get player input and other system
essentials at the same time. We will deal with the general structure of your new
SurfaceView implementation now, so we can fill in the details as we progress with
the project.

Creating a new class for the view
Without further delay, we can create a new class which extends SurfaceView.

1. Right-click the folder containing our .java files and select New |
Java Class then click on OK.

2. In the Create New Class dialog, name the new class TDView,
(Tappy Defender view). Now, click on OK to have Android Studio
autogenerate the class.

3. The new class will open in the code editor. Amend the code to have it extend
SurfaceView and implement Runnable as discussed in the previous section.
Edit the highlighted parts of the code that follows:
package com.gamecodeschool.c1tappydefender;

import android.view.SurfaceView;

public class TDView extends SurfaceView implements
Runnable{

}

4. Use the Alt | Enter combination to import the missing classes.
5. Note that we still have an error in our code. This is because we must provide

a constructor for our SurfaceView implementation. Right-click just below
the TDView class declaration and navigate to Generate | Constructor |
SurfaceView(Context:context). Or you can just type this in as shown in the
next block of code. Now click on OK.

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – First Step

[30]

What we did
We now have a new class called TDView, which extends SurfaceView for our
drawing requirements and implements Runnable for our threading needs. We have
also generated a constructor, which we will use soon to initialize our new class.

The Context parameter that is passed into our constructor is a reference to the
current state of our application within the Android system that is held by our
GameActivity class. This Context parameter is useful/essential for a number of
things that we will be implementing throughout this project.

So far, our TDView class will look like this:

package com.gamecodeschool.c1tappydefender;

import android.content.Context;
import android.view.SurfaceView;

public class TDView extends SurfaceView implements Runnable{

 public TDView(Context context) {
 super(context);
 }
}

Structuring the class code
Now that we have our TDView class extended from the SurfaceView class, we can
start coding it. To control the game, we need to be able to update all the game data/
objects. This implies an update method. In addition, we are obviously going to want
to draw all our game data once every frame after they have been updated. Let's keep
all of our drawing code together in a method called draw. Furthermore, we need to
control the frequency with which this happens. Therefore, a control method seems
like it should be part of the class as well.

We also know that everything needs to happen in your thread; so to achieve this, we
should wrap the code in the run method. Lastly, we need a way to control when the
thread should and shouldn't do its work so we need an infinite loop controlled by a
Boolean, perhaps, playing.

Copy the following code into the body of our TDView class to implement what we
just discussed:

@Override
 public void run() {
 while (playing) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

 update();
 draw();
 control();
 }
 }

This is the bare-bones of our game. The run method will execute in a thread, but it
will only execute the game loop while the Boolean playing instance is true. Then, it
will update all the game data, draw the screen based on that game data, and control
how long it is until the run method is called again.

Now, we can quickly build on this code. First of all, we can implement the three
methods that we call from the run method. Type the following code in the body of
our TDView class before the closing curly brace of the run method:

private void update(){

}

private void draw(){

}

private void control(){

}

We now need to declare our playing member variable. We can do this using the
volatile keyword as it will be accessed from outside the thread and from within.
Type this code just after the TDView class declaration:

volatile boolean playing;

Now, we know that we can control the execution of code within the run method with
the infinite loop and the playing variable. We also need to start and stop the actual
thread itself. Not just when we decide, but when the player unexpectedly quits the
game. What if he gets a phone call or just taps the home button on his device.

To handle these events, we need the TDView class and GameActivity to work
together. Now, in the TDView class, we can implement a pause method and a resume
method. Within them, we put the code to stop and start our thread. Implement these
two methods within the body of the TDView class:

// Clean up our thread if the game is interrupted or the player
quits
public void pause() {

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – First Step

[32]

 playing = false;
 try {
 gameThread.join();
 } catch (InterruptedException e) {

 }
 }

 // Make a new thread and start it
 // Execution moves to our R
 public void resume() {
 playing = true;
 gameThread = new Thread(this);
 gameThread.start();
 }

Now, we need an instance of a Thread class called gameThread. We can declare it as
a member variable of TDView just after the class declaration, right after our Boolean
playing parameter. Like this:

volatile boolean playing;
Thread gameThread = null;

Note that the onPause and onResume methods are public. We can now add code to
our GameActivity class to call these methods at the appropriate time. Remember
that GameActivity extends Activity. Therefore, use the overridden Activity
lifecycle methods.

By overriding the onPause method, whenever the activity is paused, we can shut
down the thread. This avoids potentially embarrassing the player and having to
explain to his caller, why they can hear sound FX in the background.

By overriding onResume(), we can have our thread start up in the last phase of the
Android lifecycle before the app is actually running.

Note the distinction between the pause and resume methods
of the TDView class and the overridden onPause and
onResume methods of the GameActivity class.

The game activity
Before you implement/override this method, note that all they will do is call the
parent version of their respective methods followed by the public methods in the
TDView class to which they correspond.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

You might remember back to the section when we created our new GameActivity
class, we deleted the entire code contents? With that in mind, here is the outline of
the code we will need in GameActivity.java including the implementation of the
overridden methods within the body of the GameActivity class that we discussed in
the previous section. Type this code in GameActivity.java:

package com.gamecodeschool.c1tappydefender;

import android.app.Activity;
import android.os.Bundle;

public class GameActivity extends Activity {

 // This is where the "Play" button from HomeActivity sends us
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 }

 // If the Activity is paused make sure to pause our thread
 @Override
 protected void onPause() {
 super.onPause();
 gameView.pause();
 }

 // If the Activity is resumed make sure to resume our thread
 @Override
 protected void onResume() {
 super.onResume();
 gameView.resume();
 }

}

Finally, let's go ahead and declare an object of the TDView class. Do this just after the
GameActivity class declaration:

// Our object to handle the View
private TDView gameView;

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – First Step

[34]

Now, within the onCreate method, we need to instantiate your object, keeping in
mind that your constructor in TDView.java takes a Context object as an argument.
Then, we use the newly instantiated object in a call to setContentView().
Remember when we built our home screen, we called setContentView() and
passed in our UI design. This time, we are setting the player's view to be the object
of our TDView class. Copy the following code into the onCreate method of the
GameActivity class:

// Create an instance of our Tappy Defender View (TDView)
// Also passing in "this" which is the Context of our app
gameView = new TDView(this);

// Make our gameView the view for the Activity
setContentView(gameView);

At this point, we can actually run our game and click on the Play button to proceed
to the GameView activity, which will use TDView as its view and start our thread.
Obviously, there is nothing to see yet, so let's work on the model of our design
pattern and build the basic outline of our first game object. At the end of the chapter,
we will see how to run the game on an Android device.

The PlayerShip object
We need to keep the model part of our code as separate as possible from the rest.
We can do this by creating a class for our player's spaceship. Let's call our new class
PlayerShip.

Go ahead and add a new class to the project, and call it PlayerShip. Here are a few
quick steps on how to do that. Now, right-click the folder with our .java files in it
and navigate to New | Java Class, then enter PlayerShip as the name and click
on OK.

What do we need our PlayerShip class to be able to know about itself? As a bare
minimum it needs to:

• Know where it is on the screen
• What it looks like
• How fast it is flying

These requirements suggest a few member variables we can declare. Enter the code
just after the class declaration that we generated:

private Bitmap bitmap;
private int x, y;
private int speed = 0;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

As usual, use the Alt | Enter keyboard combination to import any missing classes.
In the previous block of code, we see that we have declared an object of type Bitmap
that we will use to hold the graphic which represents our ship.

We have also declared three int type variables; x and y to hold the spaceship's
screen coordinates and another int type variable, speed to hold a value for how fast
our spaceship is traveling.

Now, let's consider what our PlayerShip class needs to do. Again as a bare
minimum it needs to:

• Prepare itself
• Update itself
• Share it's state with our view

A constructor seems to be the ideal place to prepare itself. We can initialize its x and
y coordinate variables and set a starting speed with the speed variable.

The other thing the constructor will need to do is to load the bitmap graphic, which
represents its appearance. To load bitmaps, we require an Android Context object.
This implies that the constructor that we write will need to receive a Context object
from our view.

With all this in mind, here is our PlayerShip constructor to implement point one
from our to-do list:

// Constructor
public PlayerShip(Context context) {
 x = 50;
 y = 50;
 speed = 1;
 bitmap = BitmapFactory.decodeResource
 (context.getResources(), R.drawable.ship);

 }

As usual, we need to import some new classes using the Alt | Enter combination.
After importing all the new classes required by the line which initializes our bitmap
object, we can see we still have an error; Cannot resolve symbol ship.

Let's dissect the line that loads the ship bitmap as we will be seeing this quite a lot
throughout the book.

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – First Step

[36]

The BitmapFactory class is using its static method decodeResource() to attempt
to load our graphic of the player ship. It requires two parameters. The first is the
getResources method supplied by the Context object that was passed from the
view.

The second parameter R.drawable.ship is requesting a graphic called ship from
the (R)esource folder named drawable. All we have to do to resolve this error is to
copy our graphic, named ship.png, into the drawable folder of our project.

Simply drag and drop/copy and paste the ship.png graphic contained in the
Chapter2/drawable folder from the download bundle into the res/drawable folder
in the Android Studio project explorer window. The following is a ship.png image:

Number two on our list of things that PlayerShip needs to do is, to update itself.
Let's implement a public update method that can be called from our TDView class.
The method will simply increment the ship's x value by 1 each time it is called.
Clearly, we need to get more advanced than this. For now implement the method in
the PlayerShip class like this:

public void update() {
 x++;
}

Number three on the to-do list is to share its state with the view. We can do this by
providing a bunch of getter methods like this:

//Getters
public Bitmap getBitmap() {
 return bitmap;
}

public int getSpeed() {
 return speed;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

}

public int getX() {
 return x;
}

public int getY() {
 return y;
}

Now your TDView class can be instantiated, and find out what it likes about any
PlayerShip objects. However, only the PlayerShip class itself can decide how it
should look, what properties it has, and how it behaves.

We can see how we will draw our player's ship to the screen and animate it as well.

Drawing the scene
As we will see, drawing a bitmap is really trivial. But the coordinate system that we
use to draw our graphics onto needs a brief explanation.

Plotting and drawing
When we draw a Bitmap object to the screen, we pass in the coordinates we want to
draw the object at. The available coordinates of a given Android device depend on
the resolution of its screen.

For example, the Samsung Galaxy S4 phone has a screen resolution of 1920 pixels
(across) by 1080 pixels (down) when held in a landscape view.

The numbering system of these coordinates starts in the top-left hand corner at 0,0
and proceeds down and to the right until the bottom right corner is pixel 1919, 1079.
The apparent 1 pixel disparity between 1920/ 1919 and 1080/ 1079 is because the
numbering starts at 0.

Therefore, when we draw a bitmap or any other drawable to the screen, we must
specify x, y coordinates.

Furthermore, a bitmap is, of course, comprised of many pixels. So which pixel of a
given bitmap is drawn at the x, y screen coordinate that we will be specifying?

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – First Step

[38]

The answer is the top-left pixel of the Bitmap object. Take a look at the next image,
which should clarify the screen coordinates using the Samsung Galaxy S4 as an
example.

For now, when drawing just a single ship at an arbitrary location, this information
is of little consequence. It will become more important in the next chapter, when we
start constraining our graphics to the visible screen and respawning them when they
disappear.

So let's just bare this in mind and get on with drawing our ship to the screen.

Drawing PlayerShip
Now that we know all this, we can add some code to our TDView class, so we can see
our PlayerShip class in action. First, we need a new PlayerShip object with class
scope. The following code is the TDView class declaration:

//Game objects
private PlayerShip player;

We also need a bunch of objects that we haven't seen yet to help us actually do some
drawing. We need a canvas and some paint.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[39]

The Canvas and Paint objects
The aptly named Canvas class provides just what you will expect—a virtual canvas
to draw our graphics upon.

We can make a virtual canvas using the Canvas class and project it onto our
SurfaceView object which is the view of your GameActivity class. We can actually
add Bitmap objects and even manipulate individual pixels on our Canvas object
using methods from our Paint object. In addition, we also need an object of the
SurfaceHolder class. This allows us to lock your Canvas object while we are
manipulating it and unlock it when we are ready to draw the frame.

We will see in more detail how these classes work as we proceed. Type this code
immediately following the previous line of code we typed:

// For drawing
private Paint paint;
private Canvas canvas;
private SurfaceHolder ourHolder;

As usual, we need to use the Alt | Enter keyboard combination to import some new classes
for the two lines of code that follow. From this point on, we will save digital link and just
assume that you know to do this each time you add a new class.

Next, we need to set up to prepare for drawing. The best place to do this is in
the TDView(), constructor. Type the following code to prepare our Paint and
SurfaceHolder objects for action:

// Initialize our drawing objects
ourHolder = getHolder();
paint = new Paint();

Immediately after the previous line of code, we can at last call new() to initialize our
PlayerShip object:

// Initialize our player ship
player = new PlayerShip(context);

Now, we can jump to our TDView class's update method and do this:

// Update the player
player.update();

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – First Step

[40]

That's it. The PlayerShip class (part of the model) knows what to do, and we can
add all kinds of artificial intelligence into our PlayerShip class. The TDView class
(the controller) just says when it is time to update. You can easily imagine that all
we need to do is create lots of different game objects with different properties and
behaviors and call their update methods once per frame.

Now, jump to the TDView class's draw method. Let's draw our player object by
performing the following:

1. Check that our SurfaceHolder class is valid.
2. Lock the Canvas object.
3. Clear the screen with a call to drawColor().
4. Splash some virtual paint on it by calling drawBitmap() and passing in the

PlayerShip bitmap and an x, y coordinate.
5. Finally, unlock the Canvas object and draw the scene.

To achieve these things, type this code in the draw method:

if (ourHolder.getSurface().isValid()) {

 //First we lock the area of memory we will be drawing to
 canvas = ourHolder.lockCanvas();

 // Rub out the last frame
 canvas.drawColor(Color.argb(255, 0, 0, 0));

 // Draw the player
 canvas.drawBitmap(
 player.getBitmap(),
 player.getX(),
 player.getY(),
 paint);

 // Unlock and draw the scene
 ourHolder.unlockCanvasAndPost(canvas);
}

At this point, we can actually run the game. If our eyesight is fast enough or our
Android device slow enough, we will just about see our player spaceship fly across
the screen with immense speed.

There is just one more thing to do before we deploy our game so far.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[41]

Controlling the frame rate
The reason we can barely see anything is that even though we only move our ship
at one pixel per frame along the x axis (in the PlayerShip class's update method),
our thread is calling the run method in an unrestricted manner. This is probably
happening hundreds of times per second. What we need to do is control this rate.

Sixty frames per second (FPS) is a reasonable goal. This goal implies the need
for timing. The Android system measures time in milliseconds (thousandths of a
second). Therefore, we can add the following code to the control method:

try {
 gameThread.sleep(17);
 } catch (InterruptedException e) {

 }

In the preceding code, we paused the thread for 17 milliseconds
(1000(milliseconds)/60(FPS)) by calling gameThread.sleep with 17 as the argument to
the method. We wrap the code within a try/catch block.

Deploying the game
Now, we can run our game to see our spaceship floating through space (starting at
50 pixels on the x axis and 50 pixels on the y axis).

Android Studio enables us to fairly quickly create emulators, on which we can test
our games on a development PC. However, even the most simple of games will
not run well on an emulator. When we start testing things like player input, the
experience is so awful that it is best to avoid using emulators completely.

The solution is to carry out debugging on a real Android device. It is very easy to
prepare for this.

Debugging on an Android device
The first thing to do is to visit your device manufacturer's website and obtain and
install any drivers that are required for your device and operating system.

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – First Step

[42]

The next few steps will setup the Android device for debugging. Note that different
manufacturers structure the menu options slightly differently than others. The
following sequence is probably very close, if not exact to enable debugging on most
devices.

1. Tap the Settings menu option or the Settings app.
2. Tap Developer options.
3. Tap the checkbox for USB Debugging.
4. Connect your Android device to the USB port of your development system.

The next image shows on the Android tab. At the bottom of the Android
Studio UI, you can see that Samsung GT-I9100 Android 4.1.2 (API 16) has
been detected:

5. Click on the Play icon from the Android Studio toolbar:

6. When prompted, click on OK to run the game on your chosen device.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[43]

The game will now run on the device. Any output or errors can be seen in the logcat
window, also on the Android tab:

Watch with awe as our player's spaceship moves slowly from left to right.

Summary
In this chapter, we spent a lot of time setting up the structure, game loop, and thread.
We also spent time handling the Android Activity lifecycle.

Now, we have all this in place, and we can easily start adding more game objects to
make Tappy Defender quickly feel more like a real game in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[45]

Tappy Defender – Taking
Flight

We are now ready to quickly add a lot of new objects and some features as well.
By the end of this chapter, we will be really close to a playable game. We will
detect the player touching the screen, so he can control the spaceship. We will
add virtual boosters to our SpaceShip class to move the ship up and down and
increase the speed.

We will then detect the resolution of the Android device and use it to do things
like prevent the player boosting off the screen, and to detect when our enemies
need to respawn.

We will create a new EnemyShip class, which will represent the suicidal enemies. We
will also see how we can easily spawn and then control them without changing any
of the logic from the control part of our code.

We will add a scrolling effect by adding a SpaceDust class and spawning dozens of
them to make it look like the player is whizzing through space.

Finally, we will learn about, and implement, collision detection so we know when
our player has been hit by an enemy, as well as look at a graphical trick to help us
with debugging our collision detection code.

Controlling the spaceship
We have our player's spaceship floating aimlessly on the screen starting 50 pixels
from the left and 50 pixels from the top and drifting slowly to the right. Now, we can
give the player the power to control the spaceship.

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Taking Flight

[46]

Remember the design for the controls is a one finger tap and hold to boost, release to
quit boosting and decelerate.

Detecting touches
The SurfaceView class that we extended for our view is perfect for handling screen
touches.

All we need to do is override the onTouchEvent method within our TDView class.
Let's see the code in full, and then we can examine it more closely to make sure we
understand what is going on. Enter this method in the TDView class and import the
necessary classes in the usual way. I have highlighted the parts of the code that we
will be customizing later:

// SurfaceView allows us to handle the onTouchEvent
@Override
public boolean onTouchEvent(MotionEvent motionEvent) {

 // There are many different events in MotionEvent
 // We care about just 2 - for now.
 switch (motionEvent.getAction() & MotionEvent.ACTION_MASK) {

 // Has the player lifted their finger up?
 case MotionEvent.ACTION_UP:
 // Do something here
 break;

 // Has the player touched the screen?
 case MotionEvent.ACTION_DOWN:
 // Do something here
 break;
 }
 return true;
}

This is how the onTouchEvent method works so far. The player touches the screen;
this can be any kind of contact at all. It could be a swipe, a pinch, multiple fingers,
and so on. A detailed message is sent to the onTouchEvent method.

The details of the event are contained in the MotionEvent class parameter, as we
can see in our code. The MotionEvent class holds lots of data. It knows how many
fingers were placed on the screen, the coordinates of each, and if any gestures were
made as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

As we are implementing a simple tap and hold to boost, release to stop boosting
control scheme; we can simply switch using the motionEvent.getAction() &
MotionEvent.ACTION_MASK condition and cater for just two of many possible
different cases.

The case MotionEvent.ACTION_UP: will, as the name suggests, tell us when
the player removes a finger from the screen. Then, perhaps unsurprisingly, case
MotionEvent.ACTION_DOWN: tells us if the player places a finger on the screen.

What we can find out through the MotionEvent class is quite vast.
Why not take a look at the full scope of its potential here: http://
developer.android.com/reference/android/view/
MotionEvent.html. We will also explore this class further in the
next project that we start to build in Chapter 5, Platformer – Upgrading
the Game Engine.

Adding boosters to the spaceship
Now, all we need to do is think about how we will use these events to control the
spaceship. First of all, the spaceship needs to know if it is boosting or not boosting.
This suggests a Boolean member variable. Add this code just after the class
declaration in the PlayerShip class:

private boolean boosting;

We then need to initialize it when a PlayerShip object is created. So add this to the
PlayerShip constructor:

boosting = false;

Now, we need to let the onTouchEvent method toggle boosting between true and
false, boosting and not boosting. Add these methods to the PlayerShip class:

public void setBoosting() {
 boosting = true;
}

public void stopBoosting() {
 boosting = false;
}

www.it-ebooks.info

http://developer.android.com/reference/android/view/MotionEvent.html
http://developer.android.com/reference/android/view/MotionEvent.html
http://developer.android.com/reference/android/view/MotionEvent.html
http://www.it-ebooks.info/

Tappy Defender – Taking Flight

[48]

Now, we can call these public methods from our onTouchEvent method to control
the state of whether the spaceship is boosting or not. Add this new code in the
onTouchEvent method:

// Has the player lifted there finger up?
case MotionEvent.ACTION_UP:
 player.stopBoosting();
 break;

// Has the player touched the screen?
case MotionEvent.ACTION_DOWN:
 player.setBoosting();
 break;

Now, our view is talking to our model; all we need to do is make the boosting
variable do something depending on which state it is in. The logical place for this
code will be the PlayerShip class's update method.

We will change the speed variable of our spaceship based on whether the ship is
currently boosting. At first this seems simple, but there are a few minor issues with
just increasing the speed based on whether the ship is boosting:

• One problem is that the update method is called 60 times every second. So, it
wouldn't take much boosting to have the ship flying at ridiculous speeds. We
need to constrain the ship's speed.

• Another problem is that our spaceship will rise up the screen when boosting,
and there is nothing to stop it whizzing straight off the top of the screen,
never to be seen again. We need to constrain the ship's x and y coordinates
within the screen.

• When the ship is not boosting and the speed steadily returns to zero,
what will bring the ship back down again? We will need a simple gravity
physics simulation.

To solve these three problems, we can add code to our PlayerShip class. However,
before we do this, a quick word about gameplay balance. The code which we will
see very soon uses different integer values, for example, we initialize GRAVITY to -12
and MAX_SPEED to 20. These numbers have no bearing in reality!

They are simply the arbitrary numbers that make the gameplay balanced. Feel free
to play with all these arbitrary figures to make the game harder, easier, or even
impossible. At the end of Chapter 4, Tappy Defender – Going Home, we will look more
closely at game iteration and look again at difficulty and balance.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[49]

With three of our previously stated problems in mind, add the following member
variables just after the class declaration in the PlayerShip class:

private final int GRAVITY = -12;

// Stop ship leaving the screen
private int maxY;
private int minY;

//Limit the bounds of the ship's speed
private final int MIN_SPEED = 1;
private final int MAX_SPEED = 20;

Now, we made a start to solve our three problems, we can add code to our
PlayerShip class's update method. We will delete the one line of code, we put in
there in the previous chapter. That was just there to take a quick look at our ship in
action. Enter the new code of our PlayerShip class's update method. We will take a
closer look afterward:

public void update() {

 // Are we boosting?
 if (boosting) {
 // Speed up
 speed += 2;
 } else {
 // Slow down
 speed -= 5;
 }

 // Constrain top speed
 if (speed > MAX_SPEED) {
 speed = MAX_SPEED;
}

 // Never stop completely
 if (speed < MIN_SPEED) {
 speed = MIN_SPEED;
}

 // move the ship up or down
 y -= speed + GRAVITY;

 // But don't let ship stray off screen
 if (y < minY) {

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Taking Flight

[50]

 y = minY;
 }

 if (y > maxY) {
 y = maxY;
 }

}

In order from the top of the previous block of code, we are increasing and decreasing
the speed variable by apparently arbitrary amounts, each frame of the game, based
on if the ship is boosting or not.

We then constrain the speed of the ship to a maximum of 20 and a minimum of 1, as
specified by the variables we added earlier. With the line y -= speed + GRAVITY,
we move the graphic on screen either up or down based on speed and gravity. The
apparently arbitrary values for GRAVITY and MAX_SPEED work nicely to allow the
player to awkwardly and precariously bounce along through space.

Finally, we stop the ship from ever disappearing off the screen by making sure the
ship graphic is never drawn beyond maxY and minY. You have probably noticed that,
as of yet, we haven't initialized maxY and minY. Furthermore, what will we initialize
them to anyway as many Android devices have vastly different screen resolutions?

What we need to do is discover the resolution of the Android device at run time and
use the information to initialize MaxY and minY.

Detecting the screen resolution
We know that we need the maximum y coordinate of the player's screen. Later in the
project when we start adding backgrounds and enemy ships, we will realize that we
also need the maximum x coordinate as well. With this in mind, let's see how we can
get this information and make it available to the PlayerShip class.

The most expedient time to detect the screen resolution is as the app is starting,
and before our view and the model have been instantiated. This implies that our
GameActivity class is a good place to do it. We will now add code to the onCreate
method of the GameActivity class. Add this new code to the onCreate class, before
the call to new... that creates our TDView object:

// Get a Display object to access screen details
Display display = getWindowManager().getDefaultDisplay();
// Load the resolution into a Point object
Point size = new Point();
display.getSize(size);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

The previous code declares and initializes an object of the Display type using
getWindowManager().getDefaultDisplay();. Then we create a new object of
type Point. The Point object can hold two coordinates and we then pass it as an
argument into the getSize method of our new Display object.

We now have the resolution of the Android device our game is running on, neatly
stored in size. Now pass this on to the parts of our code which require it. First, we
will change the arguments we pass in the call to new, which initializes our TDView
object. Change the call to new as shown next to pass in the screen resolution to the
TDView constructor:

// Create an instance of our Tappy Defender View
// Also passing in this.
// Also passing in the screen resolution to the constructor
gameView = new TDView(this, size.x, size.y);

Then, of course, we need to update the TDView constructor itself. In the TDView.java
file, amend the TDView constructor's signature so that the declaration now looks
like this:

TDView(Context context, int x, int y) {

Now, still in the constructor, change the way we initialize the player of our
PlayerShip object:

player = new PlayerShip(context, x, y);

Of course, we must now amend the constructor declaration within the PlayerShip
class itself, to this:

public PlayerShip(Context context, int screenX, int screenY) {

In addition, we can now initialize our maxY and minY variables within the
PlayerShip constructor. Before we see the code, we need to consider exactly how
this will work.

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Taking Flight

[52]

The coordinates of the bitmap that holds our spaceship graphic is drawn with the
top-left corner at the x = 0 and y = 0 coordinates passed in to drawBitmap() in the
TDView class's draw method. This means that there are pixels off to the right and after
the coordinates at which we begin to draw the ship. Take a look at this next image to
visualize this:

Therefore, we must set our minY and maxY values with this in mind. As the image
illustrates, the top pixel of the bitmap is indeed drawn exactly at the ships y. We can
then be confident that minY should be zero.

The bottom of the ship, however, is drawn at y + the height of the bitmap.

We can now add two lines of code to our constructor to initialize these variables:

maxY = screenY - bitmap.getHeight();
minY = 0;

You can now run the game and test out your boosters!

Building the enemies
Now that we have the tap controls implemented, it is time to add some enemies that
the player can boost to avoid.

This is going to be much easier than when we added our player's spaceship because
most of what we need is in place already. All we have to do is code a class to
represent our enemy, instantiate as many enemy objects as we need, call their update
methods, and then draw them.

As we will see, the update method for our enemy will be quite different to that of
PlayerShip. It will need to handle things like simple AI to fly toward the player. It
will also need to handle respawning when it leaves the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

Designing the enemy
To begin with, create a new Java class and call it EnemyShip. Add these member
variables inside the class so your new class will look like this:

public class EnemyShip{
 private Bitmap bitmap;
 private int x, y;
 private int speed = 1;

 // Detect enemies leaving the screen
 private int maxX;
 private int minX;

 // Spawn enemies within screen bounds
 private int maxY;
 private int minY;
}

Now, add some getter and setter methods so that the draw method can access what it
needs to draw, and where it needs to draw it. There is nothing new or unusual here:

//Getters and Setters
public Bitmap getBitmap(){
 return bitmap;
}

public int getX() {
 return x;
}

public int getY() {
 return y;
}

Spawning the enemy
Let's implement the EnemyShip constructor in full. Enter the code now, and we will
then take a closer look:

// Constructor
public EnemyShip(Context context, int screenX, int screenY){
 bitmap = BitmapFactory.decodeResource
 (context.getResources(), R.drawable.enemy);

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Taking Flight

[54]

 maxX = screenX;
 maxY = screenY;
 minX = 0;
 minY = 0;

 Random generator = new Random();
 speed = generator.nextInt(6)+10;

 x = screenX;
 y = generator.nextInt(maxY) - bitmap.getHeight();
}

The constructors' signature is exactly that of the PlayerShip class. A Context
class for manipulating your Bitmap object and screenX and screenY that hold the
resolution of the screen.

Just as we did with the PlayerShip class, we load up an image into Bitmap. Of
course, we once again need to add an image file named enemy.png to the drawable
folder of our project. There is a neat enemy graphic in the Chapter3/drawable
folder of the download bundle or you can design your own. Any size between
roughly 32 x 32 and 256 x 256 will suffice for the purposes of this game. Also, like
those supplied, your graphics do not need to be square. We will see that our game
engine is imperfect when it comes to how it looks on different screen sizes, and we
will address this in the next project:

Next, we initialize maxX, maxY, minX, and minY. Although the enemies only move
horizontally, we need the maxY and minY coordinates to make sure that we spawn
them at a sensible height. The maxX coordinate will enable us to spawn them just
off-screen horizontally.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

We create a new object of type Random and generate a random number between the
values of 10 and 15. These are the maximum and minimum speeds our enemies can
travel at. These values are fairly arbitrary, and we might adjust them when we do
some play-testing in Chapter 4, Tappy Defender – Going Home.

If you are wondering how generator.nextInt(6)+10; comes up
with a number between 10 and 15, it is because the 6 argument causes
nextInt() to return a number between 0 and 5.

We then set the enemy ship's x coordinate to screen, which spawns it on the far left
of the screen. Actually, this spawns it off screen. However, that is fine because it will
then emerge in to the player's view rather than just appearing all at once.

We now generate another random number based on maxY—the height of the enemy
ship bitmap (bitmap.getHeight())—to create a random but sensible y coordinate
for our enemy ship to spawn at.

What we need to do now is to give our enemies life by coding their update method.

Making the enemy think
Now, we can handle the EnemyShip class's update method. For now, we just need
to handle two things. First, fly the enemy toward the player's end of the screen.
We need to take account of the enemy's speed and the player's speed to simulate
this accurately. The reason we need to do this is because when the player boosts,
he expects his speed to increase, and objects to rush toward him more quickly.
However, the spaceship graphic is horizontally static.

We can increase the rate of travel of an enemy in proportion to both the enemy's
static and randomly generated speed at the same time as the player's dynamically
set speed (through boosting). This will give the player a sense of speeding up even
though the ship graphic never moves forward.

The other issue is that the enemy ship will eventually fly off the screen, on the left-
hand side. We need to detect when this happens and respawn it on the right-hand
side with a new random y coordinate and a new random speed. This is just like we
did in the constructor.

Finally before we get to the actual code, let's consider something. If the enemy is
going to take note of and use the player's speed, it will need to be able to get it. Note
that in the next block of code, the EnemyShip class's update method declaration has a
parameter to receive the player's speed.

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Taking Flight

[56]

We will see how this is passed in when we add code to the TDView class's update
method soon. Enter the following code for the EnemyShip class's update method to
implement what we have just discussed:

public void update(int playerSpeed){

 // Move to the left
 x -= playerSpeed;
 x -= speed;

 //respawn when off screen
 if(x < minX-bitmap.getWidth()){
 Random generator = new Random();
 speed = generator.nextInt(10)+10;
 x = maxX;
 y = generator.nextInt(maxY) - bitmap.getHeight();
 }
}

As you can see, we first decreased the enemy's x coordinate by the player's speed
then by the enemy's speed. As the player boosts, the enemy will fly at the player
faster. However, if the player is not boosting then the enemy will attack at the
speed that was previously and randomly generated.

// Move to the left
x -= playerSpeed;
x -= speed;

After this, we simply detected if the right-hand edge of the enemy bitmap has
disappeared from the left-hand side of the screen. This is done by detecting if the
EnemyShip class's x coordinate is the width of the bitmap off screen.

if(x < minX-bitmap.getWidth()){

Then we respawn the very same object to come at the player again. This appears to
the player as if it is an entirely new enemy.

The last three things we must do are create a new object from EnemyShip by
declaring and then initializing an object. Actually, let's make three.

Here, were we declared our player's ship in our TDView.java file, declare three
enemy ships like this:

// Game objects
private PlayerShip player;
public EnemyShip enemy1;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[57]

public EnemyShip enemy2;
public EnemyShip enemy3;

Now, in the constructor of our TDView class, initialize our three new enemies:

// Initialize our player ship
player = new PlayerShip(context, x, y);
enemy1 = new EnemyShip(context, x, y);
enemy2 = new EnemyShip(context, x, y);
enemy3 = new EnemyShip(context, x, y);

In the update method of our TDView class, we call each of the new object's update
methods in turn. Here, we also see how we pass in the player's speed to each of our
enemies so they can use it in their update methods to adjust speed accordingly.

// Update the player
player.update();
// Update the enemies
enemy1.update(player.getSpeed());
enemy2.update(player.getSpeed());
enemy3.update(player.getSpeed());

Finally, in the TDView class's draw method, we draw our new enemies to the screen.

// Draw the player
canvas.drawBitmap
 (player.getBitmap(), player.getX(), player.getY(), paint);

canvas.drawBitmap
 (enemy1.getBitmap(),
 enemy1.getX(),
 enemy1.getY(), paint);

canvas.drawBitmap
 (enemy2.getBitmap(),
 enemy2.getX(),
 enemy2.getY(), paint);

canvas.drawBitmap
 (enemy3.getBitmap(),
 enemy3.getX(),
 enemy3.getY(), paint);

You can run the game and give this a try now.

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Taking Flight

[58]

The first and most obvious problem is that the player and the enemies fly right
through each other. We will solve this problem later in this chapter, in the Things that
go bump – collision detection section. But right now, we can make our player's sense of
immersion better by drawing a star/space dust field as a background.

The thrill of flight – scrolling the
background
Implementing our space dust is going to be really quick and easy. All we will do
is create a SpaceDust class with very similar properties to our other game objects.
Spawn them into the game at a random location, move them toward the player at a
random speed, and respawn them on the far right of the screen, again with a random
speed and y coordinate.

Then in our TDView class, we can declare a whole array of these objects, update, and
draw them each frame.

Create a new class and call it SpaceDust. Now enter this code:

public class SpaceDust {

 private int x, y;
 private int speed;

 // Detect dust leaving the screen
 private int maxX;
 private int maxY;
 private int minX;
 private int minY;

 // Constructor
 public SpaceDust(int screenX, int screenY){

 maxX = screenX;
 maxY = screenY;
 minX = 0;
 minY = 0;

 // Set a speed between 0 and 9
 Random generator = new Random();
 speed = generator.nextInt(10);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[59]

 // Set the starting coordinates
 x = generator.nextInt(maxX);
 y = generator.nextInt(maxY);
 }

 public void update(int playerSpeed){
 // Speed up when the player does
 x -= playerSpeed;
 x -= speed;

 //respawn space dust
 if(x < 0){
 x = maxX;
 Random generator = new Random();
 y = generator.nextInt(maxY);
 speed = generator.nextInt(15);
 }
 }

 // Getters and Setters
 public int getX() {

 return x;
 }

 public int getY() {

 return y;
 }
}

Here is what is happening in the SpaceDust class. At the top of the previous block of
code, we declare our usual speed and maximum and minimum variables. They will
allow us to detect when the SpaceDust object leaves the left of the screen and needs
respawning on the right, and provide sensible bounds for the height at which we
respawn the object.

Then inside the SpaceDust constructor, we initialize the speed, x, and y variables
with random values, but within the bounds set by the maximum and minimum
variables we just initialized.

Then we implement the SpaceDust class's update method, which moves the object
to the left based on the speed of the object and the player, then checks if the object
has flown of the left-hand edge of the screen and respawns it with random but
appropriate values if it has.

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Taking Flight

[60]

At the bottom, we provide two getter methods so that our draw method knows
where to draw each speck of dust.

Now, we can create an ArrayList object to hold all our SpaceDust objects. Declare it
just under the declaration of the other game objects near the top of the TDView class:

// Make some random space dust
public ArrayList<SpaceDust> dustList = new
 ArrayList<SpaceDust>();

In the TDView constructor, we can initialize a whole bunch of the SpaceDust objects
using a for loop and then stash them into the ArrayList object:

int numSpecs = 40;

for (int i = 0; i < numSpecs; i++) {
 // Where will the dust spawn?
 SpaceDust spec = new SpaceDust(x, y);
 dustList.add(spec);
}

We create forty specks of dust in total. Each time through the loop, we create a new
speck of dust and the SpaceDust constructor assigns it a random location and a
random speed. We then put the SpaceDust object into our ArrayList object with
dustList.add(spec);

Next, we jump to our TDView class's update method and use an enhanced for loop
to call update() on each of our SpaceDust objects:

for (SpaceDust sd : dustList) {
 sd.update(player.getSpeed());
}

Remember that we passed in the player speed so that the dust increases and
decreases its speed relative to the player's speed.

Now to draw all our space dust, we loop through our ArrayList object and draw
a speck at a time. Of course, we add the code to our TDView class's draw method,
but we must make sure to draw the space dust first so it appears behind the other
game objects. In addition, we have an extra line to switch pixel color to white before
using the drawPoint method of our Canvas object to plot a single pixel for each
SpaceDust object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[61]

In the draw method of the TDView class, add this code to draw our dust:

// White specs of dust
paint.setColor(Color.argb(255, 255, 255, 255));

//Draw the dust from our arrayList
for (SpaceDust sd : dustList) {
 canvas.drawPoint(sd.getX(), sd.getY(), paint);

 // Draw the player
 // ...
}

The only new thing here is the canvas.drawpoint... line of code. Apart from
drawing bitmaps to the screen, the Canvas class allows us to draw primitives, like
points and lines, as well as things like text and shapes. We will use these features
when drawing a HUD for our game in Chapter 4, Tappy Defender – Going Home.

Why not run the app and check out how much neat stuff we have implemented? In
this screenshot, I have temporarily increased the number of the SpaceDust objects
to 200, just for fun. You can also see that we have enemies drawn, attacking at a
random y coordinate with random speed:

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Taking Flight

[62]

Things that go bump – collision detection
Collision detection is quite a broad subject. Throughout the three projects in this
book, we will use a whole range of different ways to detect when things collide.

So, here is a quick look at our options for collision detection, and in which
circumstances different methods may be appropriate.

Essentially, we just need to know when certain objects from our game touch other
objects. We can then respond to that event by exploding, reducing shields, playing a
sound, or whatever is appropriate. We need a broad understanding of our different
options so we can make the right decisions in any particular game.

Collision detection options
First of all, here are a few of the different mathematical calculations we can utilize
and when they may be useful.

Rectangle intersection
This type of collision detection is really straightforward. We draw an imaginary
rectangle; we can call it a hitbox or bounding rectangle, around the objects we want
to test for collision. Then, test to see if they intersect. If they do, we have a collision:

Where the hitboxes intersect, we have a collision. As we can see from the previous
image, this is far from perfect. However, in some situations, it is sufficient. To
implement this method, all we need to do is test for the intersection using the x and y
coordinates of both objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[63]

Don't use the following code. It is for demonstration purposes only.

if(ship.getHitbox().right > enemy.getHitbox().left
 && ship.getHitbox().left < enemy.getHitbox().right){
 // Ship is intersecting enemy on x axis
 //But they could be at different heights

 if(ship.getHitbox().top < enemy.getHitbox().bottom
 && ship.getHitbox().bottom > enemy.getHitbox().top){
 // Ship is intersecting enemy on y axis as well
 // Crash
 }
}

The preceding code assumes we have a getHitbox method that returns the left and
right x coordinates as well as the top and bottom y coordinates of the given object. In
the aforementioned code, we first check to see if the x axes overlap. If they don't, then
there is no point going any further. If they do, then check the y axes. If they don't, it
could have been an enemy whizzing by above or below. If they overlap on the y axis
as well, then we have a collision.

Note that we can check the x and y axis in either order as long as we check them both.

Radius overlapping
This method is also checking to see if two hitboxes intersect with each other, but as
the title suggests, it does so using circles instead. There are obvious advantages and
disadvantages. Mainly that this works well with shapes more circular in nature and
less well with elongated shapes.

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Taking Flight

[64]

From the previous image, it is easy to see how the radius overlapping method is
inaccurate for these particular objects and not hard to imagine how for a circular
object like a ball it would be perfect.

Here is how we can implement this method.

The following code is for demonstration purposes only.

// Get the distance of the two objects from
// the edges of the circles on the x axis
distanceX = (ship.getHitBox.centerX + ship.getHitBox.radius) -
 (enemy.getHitBox.centerX + enemy.getHitBox.radius;

// Get the distance of the two objects from
// the edges of the circles on the y axis
distanceY = (ship.getHitBox.centerY + ship.getHitBox.radius) -
 (enemy.getHitBox.centerY + enemy.getHitBox.radius;

// Calculate the distance between the center of each circle
double distance = Math.sqrt
 (distanceX * distanceX + distanceY * distanceY);

// Finally see if the two circles overlap
if (distance < ship.getHitBox.radius + enemy.getHitBox.radius) {
 // bump
}

The code again makes some assumptions. Like we have a getHitBox method that
can return the radius as well as the center x and y coordinates. Furthermore, because
the static Math.sqrt method takes and returns a variable of type double, we will
need to start working with different types in our SpaceShip and EnemyShip classes.

If the way we initialize distance: Math.sqrt(distanceX *
distanceX + distanceY * distanceY); looks a little confusing,
it is simply using Pythagoras' theorem to get the length of the
hypotenuse of a triangle which is equal in length to a straight line drawn
between the centers of the two circles. In the last line of our solution,
we test if distance < ship.getHitBox.radius + enemy.
getHitBox.radius, then we can be certain that we must have a
collision. That is because if the center points of two circles are closer than
the combined length of their radii, they must be overlapping.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[65]

The crossing number algorithm
This method is mathematically more complicated. However, as we will see in
our third and final project, it is perfect for detecting when a point intersects a
convex polygon:

This is perfect for an Asteroids clone, and we will explore this method more as well
as see it in action in our final project.

Optimizations
As we have seen, the different collision detection methods can have at least two
problems depending on which method you use in which situation. The problems
are lack of accuracy and drain on CPU cycles.

Multiple hitboxes
The first problem, a lack of accuracy, can be solved by having multiple hitboxes
per object.

We simply add the required number of hitboxes to our game object to most
effectively wrap it, and then perform the same rectangle intersection code on each
in turn.

Neighbor checking
This method allows us to only check objects that are in the approximate same area
as each other. It can be achieved by checking which neighborhood of our game a
given two objects are in, and then only performing the more CPU intensive collision
detection if there is a realistic chance that a collision could occur.

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Taking Flight

[66]

Suppose we have 10 objects that each need to be checked against each other, then
we need to perform 10 squared (100) collision checks. If we do neighbor checking
first, we can significantly reduce this number. In the very hypothetical situation
in the diagram, we would only need to do an absolute maximum of 11 collision
checks, instead of 100, for our 10 objects, if we first check to see if objects share the
same sector.

Implementing this in code can be as simple as having a sector member variable for
each game object, then looping through the list of objects and just checking if they
are in the same sector.

We will use all these options and optimizations over
the course of our three game projects.

Best options for Tappy Defender
Now that we know our collision detection options, we can decide the best course of
action in our current game. All our ships are approximately rectangular (or square),
there are few or no extremities on any of them, and we only have one object were we
really care about a collision (with all the others).

This tends to suggest that we can use a single rectangular hitbox for the player and
the enemy and perform purely corner aligned, global collision detection. If you're
disappointed that we are going for the easy option, then you will be pleased to hear
we will be getting into all the fancier techniques over the next two projects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[67]

To make life even easier, the Android API has a handy the Rect class that can not
only represent our hitboxes, but also has a neat intersects method that basically
does the same thing as rectangle intersection collision detection. Let's think about
how to add collision detection to our game.

First, all of our enemies and our player ship are going to need a hitbox. Add this
code to declare a new Rect member called hitbox. Do this in both the PlayerShip
and EnemyShip class:

// A hit box for collision detection
private Rect hitBox;

Important!
Be sure to do the previous step and the next three blocks of code
for both the EnemyShip class as well as the PlayerShip class. I
will remind you each time but just thought it worth mentioning
beforehand as well.

Now, we need to add a getter method to the PlayerShip class and the EnemyShip
class. Add this code to both classes:

public Rect getHitbox(){
 return hitBox;
}

And next, we need to make sure we initialize our hitboxes in both constructors.
Make sure to enter the code right at the end of the constructor:

// Initialize the hit box
hitBox = new Rect(x, y, bitmap.getWidth(), bitmap.getHeight());

Now we need to make sure the hitboxes are kept up-to-date with the coordinates of
our enemies and our player. The best place to do this is the update method of the
enemy/player ships. The next block of code will update the hitboxes with the ship's
current coordinates. Be sure to add this block of code at the very end of the update()
methods so that the hitbox is updated with the coordinates after the update methods
have done their adjustments. Again, add it to both PlayerShip and EnemyShip:

// Refresh hit box location
hitBox.left = x;
hitBox.top = y;
hitBox.right = x + bitmap.getWidth();
hitBox.bottom = y + bitmap.getHeight();

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Taking Flight

[68]

Our hitboxes have the coordinates that represent the outline of our bitmaps. This
situation is nearly perfect, apart from the transparent bits around the edges.

Now, we can use our hitboxes from the TDView class's update method to detect
collisions. But first, we need to decide what we are going to do when a collision occurs.

We need to refer to the rules of our game. We discussed them back at the beginning
of Chapter 2, Tappy Defender – First Step. We know that the player has three shields
but an enemy blows up after one hit. It makes sense to leave things like shields to
a later part of the chapter, but we need some way to see our collision detection in
action and make sure it is working.

Probably, the simplest way to acknowledge a collision at this stage, will be to make
the enemy ship disappear and respawn as normal, as if it is a totally new enemy. We
already have a mechanism in place for this. We know that when an enemy moves off
the left of the screen it respawns as if it is a new enemy on the right. All we need to
do is instantly transport the enemy to a location off of the left of the screen and the
EnemyShip class will do the rest.

We need to be able to change the EnemyShip object's x coordinate. Let's add a setter
method to the EnemyShip class so we can manipulate the x coordinate of all our
enemy spaceships. Like this:

// This is used by the TDView update() method to
// Make an enemy out of bounds and force a re-spawn
public void setX(int x) {
 this.x = x;
}

Now, we can carry out collision detection and respond when we get a hit. The
next block of code uses the static method Rect.intersects() to detect a hit by
comparing the player ship's hitbox with each of the enemy hitboxes in turn. If a hit
is detected, the appropriate enemy is moved off screen, ready to be respawned by its
own update method in the next frame. Enter this code at the very top of the TDView
class's update method:

// Collision detection on new positions
// Before move because we are testing last frames
// position which has just been drawn

// If you are using images in excess of 100 pixels
// wide then increase the -100 value accordingly
if(Rect.intersects
 (player.getHitbox(), enemy1.getHitbox())){
 enemy1.setX(-100);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[69]

}

if(Rect.intersects
 (player.getHitbox(), enemy2.getHitbox())){
 enemy2.setX(-100);
}

if(Rect.intersects
 (player.getHitbox(), enemy3.getHitbox())){
 enemy3.setX(-100);
}

That's it, our collisions will now work. It may be nice to be able to really see what
is going on. For the purposes of debugging, let's draw a rectangle around all our
spaceships, so we can see the hitboxes. We will use the drawRect method of the
Paint class and pass the properties of our hitboxes in as arguments to define the
area to draw. As you will expect, this code goes in the draw method. Note that it
should go before the code that draws our ships so that the rectangles are drawn
behind them, but after we clear the screen, as shown by the highlighted code:

// Rub out the last frame
canvas.drawColor(Color.argb(255, 0, 0, 0));

// For debugging
// Switch to white pixels
paint.setColor(Color.argb(255, 255, 255, 255));

// Draw Hit boxes
canvas.drawRect(player.getHitbox().left,
 player.getHitbox().top,
 player.getHitbox().right,
 player.getHitbox().bottom,
 paint);

canvas.drawRect(enemy1.getHitbox().left,
 enemy1.getHitbox().top,
 enemy1.getHitbox().right,
 enemy1.getHitbox().bottom,
 paint);

canvas.drawRect(enemy2.getHitbox().left,
 enemy2.getHitbox().top,
 enemy2.getHitbox().right,
 enemy2.getHitbox().bottom,

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Taking Flight

[70]

 paint);

canvas.drawRect(enemy3.getHitbox().left,
 enemy3.getHitbox().top,
 enemy3.getHitbox().right,
 enemy3.getHitbox().bottom,
 paint);

We can now run Tappy Defender and see the game in action complete with
debugging mode hitboxes enabled:

We can comment out this debugging code when we are done with it and then
uncomment it should we need it again later.

Summary
We now have all the game objects that we need for a complete game. They all
think and represent themselves internally in the model part of our design pattern.
Furthermore, our player can at last control his spaceship, and we can detect when
he crashes.

In the next chapter, we will put the finishing touches to our game including adding a
HUD (Heads Up Display), implementing the game rules, adding some extra features,
and play-testing our game to get everything in balance.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[71]

Tappy Defender –
Going Home

We are on the home straight of our first game. In this chapter, we will draw a HUD
to show the player in-game information, and implement the rules of the game so that
the player can win, lose, and get fastest times.

After that, we will make a pause screen so the player can admire their achievements
(or not) after they win or lose.

In this chapter, we will also generate our own sound FX and then add them to the
game. Following that, we will enable the player to save their fastest time, and finally
we will add a whole bunch of minor improvements, including a bit of difficulty
balancing based on the screen resolution of the player's Android device.

Displaying a HUD
We need to start making our game a bit more rounded. Games have a score or, in our
case, a time, and other rules as well. For the player to keep check on their progress
we need to display the stats of the game.

Here, we will quickly set up a HUD that will show the player everything they need
to know on screen while he is dodging enemies. We will also declare and initialize
the variables required to supply data to the HUD. In the next section, Implementing
the rules, we can begin to manipulate variables such as, shields, time, fastest time,
and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Going Home

[72]

We can start by adding some member variables to the TDView class. We use a float
value for the distanceRemaining variable because we will be using pseudo-kilometers
and fractions of kilometers to represent the distance remaining until our hero makes it
to her home planet. For the timeTaken, timeStarted, and fastestTime variables, we
will use the long type because time is represented in milliseconds and the values get
really big. Add this code after the TDView class declaration:

private float distanceRemaining;
private long timeTaken;
private long timeStarted;
private long fastestTime;

For now, we will just leave these variables with their default values and concentrate
on displaying them in our HUD. We will make them useful and meaningful in the
next section, Implementing the rules.

Now, we can go ahead and draw our HUD to display all the data the player may
want to know while playing. As so often, we will be using our versatile Paint class
object paint to do the bulk of the work. This time, we use the drawText method to
add text to the screen, the setTextAlign method to justify our text, and
setTextSize to scale the size of the text.

We can now add this code to our TDView class's draw method. Add it as the last
thing to draw, just before the call to unlockCanvasAndPost(), as shown by the
highlighted code:

// Draw the hud
paint.setTextAlign(Paint.Align.LEFT);
paint.setColor(Color.argb(255, 255, 255, 255));
paint.setTextSize(25);
canvas.drawText("Fastest:"+ fastestTime + "s", 10, 20, paint);
canvas.drawText("Time:" + timeTaken + "s", screenX / 2, 20,
paint);
canvas.drawText("Distance:" +
 distanceRemaining / 1000 +
 " KM", screenX / 3, screenY - 20, paint);

canvas.drawText("Shield:" +
 player.getShieldStrength(), 10, screenY - 20, paint);

canvas.drawText("Speed:" +

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[73]

 player.getSpeed() * 60 +
 " MPS", (screenX /3) * 2, screenY - 20, paint);

// Unlock and draw the scene
ourHolder.unlockCanvasAndPost(canvas);

After entering this code, we have some errors and probably some questions.

First, we will deal with the questions. We will look more closely at what we are
doing to fastestTime, timeTaken, distanceRemaining, and the value returned
by getSpeed in the next section, Implementing the rules. Simply put, they are
representations of distance and time that serve to give the player a sense of how they
are doing. They are not real simulations of distance, although the time is accurate.

The first error we will deal with is caused by a call to a nonexistent method
player.getShieldStrength. Add a member variable shieldStrength to the
PlayerShip class:

private int shieldStrength;

Initialize it to 2 in the PlayerShip constructor:

 shieldStrength = 2;

Implement your missing getter method in the PlayerShip class:

public int getShieldStrength() {
 return shieldStrength;
}

The final errors are caused by the undeclared variables screenX and screenY. It
is now apparent that we need the screen resolution in this part of our code. The
fastest way to deal with this is to make some new class variables called screenX
and screenY. Declare these now just after the TDView class declaration:

private int screenX;
private int screenY;

As we will see, knowing the screen coordinates is useful in a number of places, so it
makes sense to do this.

Now, in the TDView constructor, initialize screenX and screenY with the resolution
passed in by the GameActivity class. Do this at the start of the constructor:

screenX = x;
screenY = y;

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Going Home

[74]

We can now run the game and see our HUD. The only parts of our HUD with
meaningful data are the Shield and Speed labels. The speed is a pseudo-measurement
of MPS (meters per second). Of course it has no bearing on reality, but it is relative
to the speed of the whizzing stars, approaching enemies and soon, to the decreasing
distance from the player's goal, home:

Implementing the rules
Now, we should pause and think about what we need to do later in the project
because it will affect what we do while implementing our rules. When the player's
ship is destroyed or when player reaches their goal, the game will end. This implies
that the game will need to be restarted. We don't want to quit back to the home
screen each time, so we need a way to restart the game from within the TDView class.

To facilitate this, we are going to implement a startGame method in our TDView
class. The constructor will be able to call it and our game loop will also be able to call
it when necessary as well.

It will also be necessary to pass some of the tasks that the constructor currently
performs onto the new startGame method so that it can properly do its job. Also,
we will use startGame to initialize some of the variables that our game rules and
HUD require.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[75]

In order to accomplish what we discussed, startGame() will need a copy of the
application's Context object. So, like we did with startX and startY, we will now
make context a member of TDView. Declare it after the TDView class declaration:

private Context context;

Initialize it in the constructor right after the call to super(), like this:

super(context);
this.context = context;

We can now implement the new startGame method. Most of the code is just
moved from the constructor. Note that the subtle but important differences, like
using the class version of the screen coordinates screenX and screenY instead
of the constructor parameters x and y. Also, we initialize distanceRemaining,
timeTaken, and timeStarted.

private void startGame(){
 //Initialize game objects
 player = new PlayerShip(context, screenX, screenY);
 enemy1 = new EnemyShip(context, screenX, screenY);
 enemy2 = new EnemyShip(context, screenX, screenY);
 enemy3 = new EnemyShip(context, screenX, screenY);

 int numSpecs = 40;
 for (int i = 0; i < numSpecs; i++) {
 // Where will the dust spawn?
 SpaceDust spec = new SpaceDust(screenX, screenY);
 dustList.add(spec);
 }

 // Reset time and distance
 distanceRemaining = 10000;// 10 km
 timeTaken = 0;

 // Get start time
 timeStarted = System.currentTimeMillis();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Going Home

[76]

Are you are wondering what is going on with the timeStarted
initialization? We initialized startTime using a method of the System
class, currentTimeMillis. Now, startTime holds the number of
milliseconds since January 1, 1970. We will see how this is used in the
upcoming section, Ending the game. The System class has many uses.
Here, we use it to get the number of milliseconds since January 1, 1970.
This is a common system for measuring time in a computer. It is called
Unix time and the moment before the 1st millisecond of January 1, 1970
is known as the Unix Epoch.

Now, comment out or delete the now unnecessary code from the TDView constructor
but add the call to startGame() in its place:

// Initialize our player ship
//player = new PlayerShip(context, x, y);
//enemy1 = new EnemyShip(context, x, y);
//enemy2 = new EnemyShip(context, x, y);
//enemy3 = new EnemyShip(context, x, y);

//int numSpecs = 40;

//for (int i = 0; i < numSpecs; i++) {
 // Where will the dust spawn?
 //SpaceDust spec = new SpaceDust(x, y);
 //dustList.add(spec);
//}

startGame();

Next, we want to create a method to decrement the PlayerShip shield strength. This
is so that when we detect a collision, we can reduce it by one each time. Add this
simple method to the PlayerShip class:

public void reduceShieldStrength(){
 shieldStrength --;
}

Now, we can jump to the TDView class's update method and add code to implement
our game rules a bit further. We will add a Boolean variable hitDetected just before
we do all our collision detection. Inside each of the if blocks which detects a hit, we
can set hitDetected to true.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[77]

Then, after all the collision detection code, we can see if a hit has been detected and
reduce the player's shield strength accordingly. Here is the top part of the TDView
class's update method with the new lines of code highlighted:

// Collision detection on new positions
// Before move because we are testing last frames
// position which has just been drawn
boolean hitDetected = false;
if(Rect.intersects(player.getHitbox(), enemy1.getHitbox())){
 hitDetected = true;
 enemy1.setX(-100);
}

if(Rect.intersects(player.getHitbox(), enemy2.getHitbox())){
 hitDetected = true;
 enemy2.setX(-100);
}

if(Rect.intersects(player.getHitbox(), enemy3.getHitbox())){
 hitDetected = true;
 enemy3.setX(-100);
}

if(hitDetected) {
 player.reduceShieldStrength();
 if (player.getShieldStrength() < 0) {
 //game over so do something
 }
}

Note the nested if statement after the call to player.reduceShieldStrength.
This detects when the player has lost all their shields and failed. We will deal with
what happens here soon.

We are really close to finishing off our game rules. We just need to decrease the
distanceRemaining relative to the player's speed. This is so that we know when
the player has succeeded. We also need to update the timeTaken variable so that the
HUD is updated each time our draw method is called. This may not seem important,
but thinking ahead a little, we can foresee a time when the game has ended, either
because the player has failed or because the player has won. Let's talk about the end
of the game.

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Going Home

[78]

Ending the game
If the game is not ended, the game is playing, and if the player has just died or won,
the game is ended. We need to know when the game is ended and when it is playing.
Let's make a new member variable gameEnded and declare it after the TDView
class declaration:

private boolean gameEnded;

Now, we can initialize gameEnded in the startGame method. Enter this code as the
very last line in the method.

gameEnded = false;

Now, we can finish the last few lines of our game rules logic, but wrap them in a test
to see if the game has ended or not. Add the following code to conditionally update
our game rules logic, right at the end of the TDView class's update method:

if(!gameEnded) {
 //subtract distance to home planet based on current speed
 distanceRemaining -= player.getSpeed();

 //How long has the player been flying
 timeTaken = System.currentTimeMillis() - timeStarted;
}

Our HUD will now have accurate data to keep the player informed of exactly how
they are doing. We can also detect when the player arrives home and wins because
distanceRemaining will pass zero. In addition, when distance remaining is less
than zero, we can test to see if timeTaken is less than fastestTime and update
fastestTime if it is. We can also set gameEnded to true. Add this code directly after
the last block of code in the TDView class's update method:

//Completed the game!
if(distanceRemaining < 0){
 //check for new fastest time
 if(timeTaken < fastestTime) {
 fastestTime = timeTaken;
 }

 // avoid ugly negative numbers
 // in the HUD
 distanceRemaining = 0;

 // Now end the game

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[79]

 gameEnded = true;
}

We ended the game when the player won; now, add this next line of code to end the
game when the player loses all their shields. Update this code in the TDView class's
update method. The new line of code is highlighted:

if(hitDetected) {
 player.reduceShieldStrength();
 if (player.getShieldStrength() < 0) {
 gameEnded = true;
 }
}

Now, we just need to make something actually happen when gameEnded is set to true.

One way to do this is to alternate how we draw the HUD based on whether the
gameEnded Boolean is true or false. Identify the HUD drawing code in the draw
method, shown again here for easy reference:

// Draw the HUD
paint.setTextAlign(Paint.Align.LEFT);
paint.setColor(Color.argb(255, 255, 255, 255));
paint.setTextSize(25);
canvas.drawText("Fastest:"+ fastestTime + "s", 10, 20, paint);
canvas.drawText("Time:" + timeTaken + "s", screenX / 2, 20, paint);

canvas.drawText("Distance:" +
 distanceRemaining / 1000 +
 " KM", screenX / 3, screenY - 20, paint);

canvas.drawText("Shield:" +
 player.getShieldStrength(), 10, screenY - 20, paint);

canvas.drawText("Speed:" +
 player.getSpeed() * 60 +
 " MPS", (screenX /3) * 2, screenY - 20, paint);

We want to wrap that code in an if-else block. If the game is not ended, draw the
normal HUD else draw an alternative. Wrap the HUD drawing code like this:

if(!gameEnded){
 // Draw the hud
 paint.setTextAlign(Paint.Align.LEFT);
 paint.setColor(Color.argb(255, 255, 255, 255));

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Going Home

[80]

 paint.setTextSize(25);
 canvas.drawText("Fastest:"+ fastestTime + "s", 10, 20, paint);

 canvas.drawText("Time:" +
 timeTaken +
 "s", screenX / 2, 20, paint);

 canvas.drawText("Distance:" +
 distanceRemaining / 1000 +
 " KM", screenX / 3, screenY - 20, paint);

 canvas.drawText("Shield:" +
 player.getShieldStrength(), 10, screenY - 20, paint);

 canvas.drawText("Speed:" +
 player.getSpeed() * 60 +
 " MPS", (screenX /3) * 2, screenY - 20, paint);

}else{
 //this happens when the game is ended
}

Now, let's deal with the else block, which we will execute when the game is ended.
What we will do is draw a big Game Over, and show the end game stats from the
HUD. The thread continues on but the HUD stops updating. Enter this code in the
else block:

// Show pause screen
paint.setTextSize(80);
paint.setTextAlign(Paint.Align.CENTER);
canvas.drawText("Game Over", screenX/2, 100, paint);
paint.setTextSize(25);
canvas.drawText("Fastest:"+
 fastestTime + "s", screenX/2, 160, paint);

canvas.drawText("Time:" + timeTaken +
 "s", screenX / 2, 200, paint);

canvas.drawText("Distance remaining:" +
 distanceRemaining/1000 + " KM",screenX/2, 240, paint);

paint.setTextSize(80);
canvas.drawText("Tap to replay!", screenX/2, 350, paint);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[81]

Note that we switch text sizes using setTextSize(), and we align all the text in the
center of the screen using setTextAlign(). This is what it looks like when you run
the game. We just need a way to restart the game after it has ended:

Restarting the game
To allow the player to restart after the game has ended, we just need to listen for a
touch and call startGame(). Lets edit our onTouchListener() code to achieve this.
The case MotionEvent.ACTION_DOWN: is the case we are interested in amending. We
can simply add conditions here that if the screen is touched while the game is ended,
restart. The new code to add to case MotionEvent.ACTION_DOWN: is highlighted:

// Has the player touched the screen?
case MotionEvent.ACTION_DOWN:
 player.setBoosting();
 // If we are currently on the pause screen, start a new game
 if(gameEnded){
 startGame();
 }
 break;

Try it out. You can now restart the game from the pause menu by tapping the screen.
Is it just me or is it a bit quiet round here?

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Going Home

[82]

Adding sound FX
Adding sound effects in Android is really straightforward. First, let's look at where
we can get our sound FX from. If you just want to get on with the coding, you can
use my sound FX in the Chapter4/assets folder.

Generating the FX
We require four sound FX for our Tappy Defender game:

• The sound for when our player crashes into an alien, which we will call
bump.ogg.

• The sound for when the player is destroyed, which we will call
destroyed.ogg.

• A fun sound for when the game first begins, which we will call start.ogg.
• Finally, a victory whoop-type sound, which we will call win.ogg.

Here is a very quick guide to make these sound FX using BFXR. Grab a free copy of
BFXR from www.bfxr.net.

Follow the simple instructions on the website to set it up. Try out a few of these
things to make our cool sound FX.

This is a very condensed tutorial. You can do so much with BFXR.
To learn more read the tips on the website at the previous URL.

1. Run bfxr.exe.

www.it-ebooks.info

www.bfxr.net
http://www.it-ebooks.info/

Chapter 4

[83]

2. Try out all the preset types, which generate a random sound of the type you
are working on. When you have a sound that is close to what you want,
move to the next step:

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Going Home

[84]

3. Use the sliders to fine-tune the pitch, duration, and other aspects of your
new sound:

4. Save your sound by clicking on the Export Wav button. Despite the name of
this button, as we will see we can save in formats other than .wav too.

5. Android likes to work with sounds in the OGG format, so when asked to
name your file use the .ogg extension at the end of the filename. Remember
we need to create bump.ogg, destroyed.ogg, start.ogg, and win.ogg.

6. Repeat steps 2 to 5 and create the four sound FX that we discussed.
7. Right-click the app folder in Android Studio. From the pop-up menu,

navigate to New | Android resource directory.
8. In the Directory name field, type assets. Click on OK to create the

assets folder.
9. Use your operating system's file manager to add a folder called assets to

the main folder of the project, then add the four sound files to the new assets
folder in your project.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[85]

The SoundPool class
To play our sounds, we will use the SoundPool class. We are using the deprecated
version of the SoundPool constructor because the new version needs API 21 or
newer and it is likely that lots of readers will be using an earlier version of Android.
We can dynamically get the Android version and provide a different version of the
code for pre- and post-API level 21, but the older constructor meets our needs.

Coding the sound FX
Declare a SoundPool object and some integers to represent the individual sounds.
Add this code just after the TDView class declaration:

private SoundPool soundPool;
 int start = -1;
 int bump = -1;
 int destroyed = -1;
 int win = -1;

Next, we can initialize our SoundPool object and our integer sound IDs. We wrap the
code in a try-catch block as required.

Note that the call to load() starts a process of converting our .ogg files to raw
sound data. If the process is not finished when a call to playSound() is made, the
sound won't play. The calls to load() are in the likely order of them being used to
minimize this possibility. Enter this code in the constructor of our TDView class as
shown. The new code is highlighted:

TDView(Context context, int x, int y) {
 super(context);
 this.context = context;

 // This SoundPool is deprecated but don't worry
 soundPool = new SoundPool(10, AudioManager.STREAM_MUSIC,0);
 try{
 //Create objects of the 2 required classes
 AssetManager assetManager = context.getAssets();
 AssetFileDescriptor descriptor;

 //create our three fx in memory ready for use
 descriptor = assetManager.openFd("start.ogg");
 start = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("win.ogg");

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Going Home

[86]

 win = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("bump.ogg");
 bump = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("destroyed.ogg");
 destroyed = soundPool.load(descriptor, 0);

 }catch(IOException e){
 //Print an error message to the console
 Log.e("error", "failed to load sound files");
 }

Add a call to playSound() using the appropriate reference at the points in our code
which represent the appropriate event in our game. We have four sounds, so four
calls to playSound() will be made.

The first goes at the very end of the startGame() method:

soundPool.play(start, 1, 1, 0, 0, 1);

The next two are highlighted in the if(hitDetected) block:

if(hitDetected) {
 soundPool.play(bump, 1, 1, 0, 0, 1);
 player.reduceShieldStrength();
 if (player.getShieldStrength() < 0) {
 soundPool.play(destroyed, 1, 1, 0, 0, 1);
 paused = true;
 }
}

The last one is in the if(distanceRemaining < 0) block, as highlighted:

//Completed the game!
if(distanceRemaining < 0){
 soundPool.play(win, 1, 1, 0, 0, 1);
 //check for new fastest time
 if(timeTaken < fastestTime) {
 fastestTime = timeTaken;
 }

 // avoid ugly negative numbers
 // in the HUD

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[87]

 distanceRemaining = 0;

 // Now end the game
 gameEnded = true;
}

It's time to run Tappy Defender now and hear the sound in action.

We will see how to save our player's high score by saving it to a file when they
achieve it and loading it back up again when Tappy Defender starts.

Adding persistence
You may have noticed that the current fastest time is zero and can therefore never be
beaten. The other problem is that every time the player quits the game the high score
is lost. Now, we will load a default high score from a file. When a new high score
is achieved, save it to the file. It doesn't matter if the player quits the game or even
switches off their phone; their high score will remain.

First we need two new objects. Declare them as members of the TDView class after
the TDView class declaration. The first is a SharedPreferences object and the second
is an Editor object, which actually writes to the file for us:

private SharedPreferences prefs;
private SharedPreferences.Editor editor;

We use prefs first as we just want to attempt to load a high score if one exists. We
will also initialize editor ready for when we save our high score. We do this in the
TDView constructor:

// Get a reference to a file called HiScores.
// If id doesn't exist one is created
prefs = context.getSharedPreferences("HiScores",
 context.MODE_PRIVATE);

// Initialize the editor ready
editor = prefs.edit();

// Load fastest time from a entry in the file
// labeled "fastestTime"
// if not available highscore = 1000000
fastestTime = prefs.getLong("fastestTime", 1000000);

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Going Home

[88]

Let's use our Editor object to write any new fastest times to the HiScores file when
appropriate. Add the extra highlighted lines shown to add the proposed changes to
our file, first into a buffer and then commit the changes:

//Completed the game!
if(distanceRemaining < 0){
 soundPool.play(win, 1, 1, 0, 0, 1);
 //check for new fastest time
 if(timeTaken < fastestTime) {
 // Save high score
 editor.putLong("fastestTime", timeTaken);
 editor.commit();
 fastestTime = timeTaken;
 }

 // avoid ugly negative numbers
 // in the HUD
 distanceRemaining = 0;

 // Now end the game
 gameEnded = true;
}

The last thing we need to do is get the home screen to load up the fastest time and
display it to the player. We will load the fastest time in exactly the same way as we
did in our TDView constructor. We will also get a reference to our TextView through
its ID textHighScore, which we assigned way back at the beginning of Chapter 2,
Tappy Defender – First Step. We then use the setText method to display it to the player.

Open up MainActivity.java and add the highlighted code to the onCreate method
to achieve what we just discussed:

// This is the entry point to our game
@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 //Here we set our UI layout as the view
 setContentView(R.layout.activity_main);

 // Prepare to load fastest time
 SharedPreferences prefs;
 SharedPreferences.Editor editor;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[89]

 prefs = getSharedPreferences("HiScores", MODE_PRIVATE);

 // Get a reference to the button in our layout
 final Button buttonPlay =
 (Button)findViewById(R.id.buttonPlay);

 // Get a reference to the TextView in our layout
 final TextView textFastestTime =
 (TextView)findViewById(R.id.textHighScore);

 // Listen for clicks
 buttonPlay.setOnClickListener(this);

 // Load fastest time
 // if not available our high score = 1000000
 long fastestTime = prefs.getLong("fastestTime", 1000000);

 // Put the high score in our TextView
 textFastestTime.setText("Fastest Time:" + fastestTime);

}

Now, we have a complete working game. However, it is not really finished yet. To
make a game that is genuinely playable and fun, we have to improve, refine, test,
and iterate.

Iteration
How can we make our game better and more playable? Let's look at a number of
possibilities and then go ahead and implement them.

Multiple different enemy graphics
Let's make the enemies a bit more interesting by adding a few more graphics to
the game. First, we need to add the extra graphics to the project. Copy and paste
enemy2.png and enemy3.png from the Chapter4/drawables folder of the download
bundle into the drawables folder in Android Studio.

enemy2 and enemy3

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Going Home

[90]

Now, we just need to amend the EnemyShip constructor. This code generates a
random number between 0 and 2, and then switches to load a different enemy
bitmap accordingly. Our completed constructor now looks like this:

// Constructor
public EnemyShip(Context context, int screenX, int screenY){
 Random generator = new Random();
 int whichBitmap = generator.nextInt(3);
 switch (whichBitmap){
 case 0:
 bitmap = BitmapFactory.decodeResource
 (context.getResources(), R.drawable.enemy3);
 break;

 case 1:
 bitmap = BitmapFactory.decodeResource
 (context.getResources(), R.drawable.enemy2);
 break;

 case 2:
 bitmap = BitmapFactory.decodeResource
 (context.getResources(), R.drawable.enemy);
 break;
 }

 maxX = screenX;
 maxY = screenY;
 minX = 0;
 minY = 0;

 speed = generator.nextInt(6)+10;
 x = screenX;
 y = generator.nextInt(maxY) - bitmap.getHeight();

 // Initialize the hit box
 hitBox = new Rect(x, y, bitmap.getWidth(), bitmap.getHeight());

}

Note that we just need to move the Random generator = new Random(); line of
code to the top of the constructor, so we can use it to choose a bitmap as well as
generate a random height later in the constructor, as usual.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[91]

An exercise in balance
Probably the biggest playability issue in the game is the difference in difficulty when
playing on a medium/high resolution screen as opposed to a low resolution screen.
For example, one of my testing devices is a Samsung Galaxy S2. It is a few years old
now, and the screen resolution is 800 x 480 pixels when held in the landscape position.
For comparison, I tested the game on a Samsung Galaxy S4 that has 1920 x 1080 pixels
in landscape mode. This is more than double the resolution of the S2.

On the S4, the player seems to effortlessly glide in between the almost insignificant
enemies, while on the S2, the player is faced with an almost impenetrable wall of
alien steel.

The real solution to this problem is to draw game objects at pseudo-real-world
coordinates, and then map these coordinates back to the device at the same scale,
regardless of resolution. This way, the game will look and play the same on both an
S2 and an S4. In the next project, we will build a more advanced game engine that
does this.

Of course, we will still have the consideration of the actual physical screen size,
making the player's experience varied, but this is a much more accepted situation
by gamers.

As a quick and dirty solution, we will vary the size of the ships and the number of
enemies. So on lower resolutions, we will have three enemies, but we will shrink
their size. On higher resolutions, we will increase the number of enemies gradually.

In the EnemyShip class, just after the switch block that loads our enemy graphics
into our Bitmap object, add the line shown highlighted to call a new method that we
will write soon, scaleBitmap():

switch (whichBitmap){
 case 0:
 bitmap = BitmapFactory.decodeResource(context.
 getResources(),
 R.drawable.enemy3);
 break;

 case 1:
 bitmap = BitmapFactory.decodeResource(context.
 getResources(),
 R.drawable.enemy2);
 break;

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Going Home

[92]

 case 2:
 bitmap = BitmapFactory.decodeResource(context.
 getResources(),
 R.drawable.enemy);
 break;
}

scaleBitmap(screenX);

Now, we will write our new scaleBitmap method. This simple helper method takes
a single argument, which as we have seen is the horizontal resolution of the screen.
We then use the resolution and the static createScaledBitmap method to reduce
our Bitmap objects on a scale of 2 or 3 depending on the resolution of the screen.
Add the new scaleBitmap method to the EnemyShip class:

public void scaleBitmap(int x){

 if(x < 1000) {
 bitmap = Bitmap.createScaledBitmap(bitmap,
 bitmap.getWidth() / 3,
 bitmap.getHeight() / 3,
 false);
 }else if(x < 1200){
 bitmap = Bitmap.createScaledBitmap(bitmap,
 bitmap.getWidth() / 2,
 bitmap.getHeight() / 2,
 false);
 }
}

The enemies will be scaled down in size on lower resolution screens. Now, let's
increase the number of enemies for the higher resolutions.

For this, we will add code to the TDView class to add extra enemies to higher
resolution screens.

Warning! This code sucks, but it works and it shows us where
we can make improvements in our next project. When planning
a game, there is always a trade-off between good design and
simplicity. By keeping things organized from the start, we can get
away with a bit of hacking near the end. Yes, we can redesign the
way we spawn and store our game objects, and if Tappy Defender
was an ongoing project then this would be worthwhile.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[93]

Add two more enemy ship objects after the first three, as shown:

// Game objects
private PlayerShip player;
public EnemyShip enemy1;
public EnemyShip enemy2;
public EnemyShip enemy3;
public EnemyShip enemy4;
public EnemyShip enemy5;

Now, add code to conditionally initialize these two new objects in the
startGame method:

enemy1 = new EnemyShip(context, screenX, screenY);
enemy2 = new EnemyShip(context, screenX, screenY);
enemy3 = new EnemyShip(context, screenX, screenY);

if(screenX > 1000){
 enemy4 = new EnemyShip(context, screenX, screenY);
}

if(screenX > 1200){
 enemy5 = new EnemyShip(context, screenX, screenY);
}

Add code in the update method to update our fourth and fifth enemies and check
for collisions:

// Collision detection on new positions
// Before move because we are testing last frames
// position which has just been drawn
boolean hitDetected = false;
if(Rect.intersects(player.getHitbox(), enemy1.getHitbox())){
 hitDetected = true;
 enemy1.setX(-100);
}

if(Rect.intersects(player.getHitbox(), enemy2.getHitbox())){
 hitDetected = true;
 enemy2.setX(-100);

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Going Home

[94]

}

if(Rect.intersects(player.getHitbox(), enemy3.getHitbox())){
 hitDetected = true;
 enemy3.setX(-100);
}

if(screenX > 1000){
 if(Rect.intersects(player.getHitbox(), enemy4.getHitbox())){
 hitDetected = true;
 enemy4.setX(-100);
 }
}

if(screenX > 1200){
 if(Rect.intersects(player.getHitbox(), enemy5.getHitbox())){
 hitDetected = true;
 enemy5.setX(-100);
 }
}

if(hitDetected) {
soundPool.play(bump, 1, 1, 0, 0, 1);
 player.reduceShieldStrength();
 if (player.getShieldStrength() < 0) {
 soundPool.play(destroyed, 1, 1, 0, 0, 1);
 gameEnded = true;
 }
}

// Update the player
player.update();
// Update the enemies
enemy1.update(player.getSpeed());

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[95]

enemy2.update(player.getSpeed());
enemy3.update(player.getSpeed());

if(screenX > 1000) {
 enemy4.update(player.getSpeed());
}
if(screenX > 1200) {
 enemy5.update(player.getSpeed());
}

Finally, in the draw method, draw our extra enemies when appropriate:

// Draw the player
canvas.drawBitmap(player.getBitmap(), player.getX(),
player.getY(), paint);
canvas.drawBitmap(enemy1.getBitmap(),
 enemy1.getX(), enemy1.getY(), paint);
canvas.drawBitmap(enemy2.getBitmap(),
 enemy2.getX(), enemy2.getY(), paint);
canvas.drawBitmap(enemy3.getBitmap(),
 enemy3.getX(), enemy3.getY(), paint);

if(screenX > 1000) {
 canvas.drawBitmap(enemy4.getBitmap(),
 enemy4.getX(), enemy4.getY(), paint);
}
if(screenX > 1200) {
 canvas.drawBitmap(enemy5.getBitmap(),
 enemy5.getX(), enemy5.getY(), paint);
}

Of course, we now realize that we may like to scale the player as well. This makes
it plain that perhaps we need a Ship class, from which we can derive PlayerShip
and EnemyShip.

Add to this the cumbersome manner in which we added the extra enemies for higher
resolution screens and a much more polymorphic solution is probably worthwhile.
We will see how we can seriously improve this and virtually every other aspect of
our game engine in the next project.

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Going Home

[96]

Format time
Look at how time is formatted in the player's HUD:

Yuck! Let's write a simple helper method to make this look a whole lot nicer. We will
add a new method to the TDView class called formatTime(). The method uses the
number of elapsed milliseconds in this game (timeTaken) and reorganizes them into
seconds and fractions of a second. It pads the fractions with zeros where appropriate
and returns the result as a String ready to be drawn in the TDView class's draw
method. The reason the method takes an argument rather than just using the
member variable timeTaken is so we can reuse this code in a minute.

private String formatTime(long time){
 long seconds = (time) / 1000;
 long thousandths = (time) - (seconds * 1000);
 String strThousandths = "" + thousandths;
 if (thousandths < 100){strThousandths = "0" + thousandths;}
 if (thousandths < 10){strThousandths = "0" + strThousandths;}
 String stringTime = "" + seconds + "." + strThousandths;
 return stringTime;
}

We amend the line that draws the time in the player's HUD. For context, in the next
piece of code, I have commented out the entirety of the original line and provided
the new line, which includes our call to formatTime(), and highlighted it:

//canvas.drawText("Time:" + timeTaken + "s", screenX / 2, 20,
paint);
canvas.drawText("Time:" +
 formatTime(timeTaken) +
 "s", screenX / 2, 20, paint);

In addition, with one minor change, we can use this formatting on the Fastest:
label in the HUD as well. Again, the old line is commented out and the new one
is highlighted. Find and amend the code in the TDView class's draw method:

//canvas.drawText("Fastest:" + fastestTime + "s", 10, 20, paint);
canvas.drawText("Fastest:" +
 formatTime(fastestTime) +
 "s", 10, 20, paint);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[97]

We should also update the time formatting on the pause screen. The lines to change
are commented out and the new lines to add are highlighted:

// Show pause screen
paint.setTextSize(80);
paint.setTextAlign(Paint.Align.CENTER);
canvas.drawText("Game Over", screenX/2, 100, paint);
paint.setTextSize(25);

// canvas.drawText("Fastest:"
 + fastestTime + "s", screenX/2, 160, paint);
canvas.drawText("Fastest:"+
 formatTime(fastestTime) + "s", screenX/2, 160, paint);

// canvas.drawText("Time:" +
 timeTaken + "s", screenX / 2, 200, paint);
canvas.drawText("Time:"
 + formatTime(timeTaken) + "s", screenX / 2, 200, paint);

canvas.drawText("Distance remaining:" +
 distanceRemaining/1000 + " KM",screenX/2, 240, paint);
paint.setTextSize(80);
canvas.drawText("Tap to replay!", screenX/2, 350, paint);

Fastest: is now formatted in the same way as Time: on both the in-game HUD and
the pause screen HUD. Take a look at our neatly formatted time now:

Handle the back button
We will quickly add a small block of code to handle what happens when the player
presses the back button on their Android device. Add this new method to both the
GameActivity and MainActivity classes. We simply check if the back button was
pressed, and if it was, call finish() to let the operating system know we are done
with this activity.

// If the player hits the back button, quit the app
public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode == KeyEvent.KEYCODE_BACK) {
 finish();
 return true;
 }
 return false;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Tappy Defender – Going Home

[98]

The finished game
Finally, in case you are following along for the theory and not the practical, here is
the finished GameActivity on a high resolution screen with a few hundred extra
stars and shields:

Summary
We have implemented the component parts of a basic game engine. We can do so
much more. Of course, a modern mobile game will have a lot more going on than in
ours. How will we handle collisions when there are lots more game objects? Couldn't
we tighten up our class hierarchy a bit, as there were lots of similarities between our
PlayerShip and EnemyShip classes? How can we add complex internal character
animations without confusing the structure of our code, and what if we want smart
enemies, enemies who can actually think?

We need realistic backgrounds, side objectives, power-ups, and pick-ups. We want a
game world with real-world coordinates that map back accurately regardless of the
resolution of the screen.

We need a smarter game loop that runs the game at the same speed regardless of
the CPU it is being processed on. Most of all, what we really need, more than any of
these things, is a dirty big machine gun. Let's build a classic platform game.

www.it-ebooks.info

http://www.it-ebooks.info/

[99]

Platformer – Upgrading the
Game Engine

Welcome to the second project of this book. Here, we will build a really tough retro
platform game. It is not tough to build, but tough to beat when you play it. At the
end of the project, we will also discuss ways to make the game play a little less
punishing should you wish.

This chapter will focus entirely on our game engine and essentially lead to an
upgraded version of the Tappy Defender code.

First, we will discuss what we want to achieve with this game: the backstory, game
mechanics, and rules.

Then, we will quickly create an activity that instantiates a view that will do all the
work.

After that, we will flesh out the basic structure of our PlatformView class, which
will have some subtle, but important differences to our TDView class. Most notably,
PlatformView will have a simple but effective way of managing the timing of all the
events of our game.

We will then start the iterative process of building our GameObject class, from which
almost every entity of the game world will be derived.

Next, we will discuss the concept of a viewport through which the game world is
viewed by the player. We will no longer be designing our game objects to operate at
the level of the screen resolution, but they will now exist in a world with their own
x and y coordinates that we can think of as virtual meters. There is also a simple
system of depth on the z axis as well. This will be handled by our new Viewport
class.

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Upgrading the Game Engine

[100]

After this, we will look at how we design and layout the content of our game.
This is done via a class that is used as a level designer and can be used in a
nonprogrammatic way to map out the jumps, enemies, rewards, and goals that
constitute the layout of a level.

To manage the level designs and load them into our game engine, we will need
another class. We will call it LevelManager.

Finally in this chapter, we will look at our enhanced update and draw methods
within the PlatformView class so that we can actually run our new game and see the
first output on the screen.

With so much to do, we better get started.

The game
The game we will build is based on the game play of some of the brutally hard
platform games of the '80s, such as Bounty Bob Strikes Back and Impossible Mission.
These games featured difficult jumps and required insanely precise timing at the
same time as giving the player an unforgiving number of lives/chances. This style of
game works well for us because we can actually build a multilevel playable game in
just four chapters.

The design of the classes will make it really easy for you to add your own extra
features, and game objects or make it slightly less challenging to play should you
want to.

The backstory
Our hero Bob, having just returned from a secret mission to destroy an evil scientist
at the center of the Earth, finds he is deep underground. Worse, it seems that
although he has defeated the evil scientist, it was not in time to save the planet from
the powerful guards and deadly flying robot drones that he unleashed.

Bob must make his way from the deep underground fiery cave, through the heavily
guarded city, and forest, high in the mountains, where he hopes to live, free from the
terrifying new order that has taken over the planet.

On his journey through these four levels, he must avoid guards, destroy drones,
collect lots of money, and upgrade his initially puny machine gun.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[101]

The game mechanics
The game will be about executing precise jumps, planning the best route through a
level to collect the loot and escape. Bob will be able to stand precariously on ledges
with whole pixels of his feet overhanging, to be able to make seemingly impossible
jumps. Bob will be able to control the distance he travels while jumping, meaning
that sometimes he will often need to make sure he doesn't over jump.

Bob will need to collect machine gun upgrades before attempting to escape via
heavily guarded areas.

Bob will only have three lives, but may be able to find some more on his journey.

Rules for the game
When Bob loses a life by being caught by a drone/guard, touching fire, or falling out
of the game world, he will respawn at the start of the current level. Drones can fly,
and will home in on Bob as soon as he comes into view. Bob will need to make sure
he has enough firepower to handle the drones. Guards will patrol predetermined
parts of the level, but they are tough and can only be knocked back by Bob's machine
gun. Usually, Bob will need to execute a precisely timed jump to progress past a
guard.

The environment will also be tough. Bob will need to completely master each level,
as one wrong jump will send him plummeting back to the start, straight into the
clutches of an enemy or even to his fiery death.

Upgrading the game engine
All the talk of guards, drones, fire, collectibles, guns, and the implied much larger
game world suggests a much more complex system to manage. One of the goals of
our game engine will be to make this complexity easily manageable. The other goal
will be to separate the level design from the coding. When our game is done, you
will be able to sit back and design the most evil, yet rewarding levels, in multiple
different environments without touching the code.

The platform activity
First we start off with our Activity class, which is the entry point into our game.
There is not much new here, so let's go ahead and get it built quickly. Create a
new project, and in the Application Name field, enter C5 Platform Game. Choose
Phones and tablets, then Blank Activity when prompted. In the Activity Name
field, type PlatformActivity.

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Upgrading the Game Engine

[102]

Obviously you don't have to follow my exact naming choices, but just
remember to make minor alterations in the code to reflect your own
naming choices.

You can delete activity_platform.xml from the layout folder. You can also
delete all the code within the PlatformActivity.java file. Just leave the package
declaration. Now, we have an entirely blank canvas ready for us to start coding.
Here is the entirety of our project so far:

package com.gamecodeschool.c5platformgame;

Let's start building our engine. Just like in our Tappy Defender project, we will build
a class to handle the view aspect of our game. Perhaps unsurprisingly, we will call
the class PlatformView. Therefore, our PlatformActivity class needs to instantiate
a PlatformView object and set it as the main view of the app, just like in the previous
project.

We will be making some significant upgrades to our engine, but this will mainly
happen in the view. In the code for the PlatformActivity class that we will
look at next, we do much the same as in the previous project. First, declare the
PlatformView object and set it as the main view in the overridden onCreate
method; however, before we do this, we also capture and pass in the resolution of
the device's screen.

We do this using the Display class and chaining the getWindowManager() and
getDefaultDisplay() methods to get the properties of the physical display
hardware that our game will be running on. Then, we create an object of type Point
called resolution and store the resolution of the display into our Point object by
calling display.getSize(size).

This stores the horizontal and vertical number of pixels of the screen into size.x and
size.y, respectively. We can then go ahead and instantiate a new PlatformView
object by calling its constructor and passing in the values stored in size.x and
size.y. As before, we also pass in the application, Context object (this) that like
in the previous project, we will find many uses for.

We can then set platformView as the view by calling setContentView() in the
usual way. As earlier, we override the Activity class's lifecycle methods onPause()
and onResume() to have them call their respective methods in our soon-to-be-written
PlatformView class. These two methods can then start and stop our Thread class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[103]

Here is the entirety of the code for the PlatformActivity class that we have
just discussed, with no significant new aspects. Type or copy and paste the code
into your project. The code for this chapter can be found within the download
bundle from the book's page on the Packt Publishing website. All the code and
assets from this chapter can be found in the Chapter5 folder. This file is called
PlatformActivity.java.

Remember to import all the new classes when prompted to do so, or by
pressing the Alt | Enter keyboard combination while hovering the cursor
over the error when a missing class causes this error.

import android.app.Activity;
import android.graphics.Point;
import android.os.Bundle;
import android.view.Display;

public class PlatformActivity extends Activity {

 // Our object to handle the View
 private PlatformView platformView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Get a Display object to access screen details
 Display display = getWindowManager().getDefaultDisplay();

 // Load the resolution into a Point object
 Point resolution = new Point();
 display.getSize(resolution);

 // And finally set the view for our game
 // Also passing in the screen resolution
 platformView = new PlatformView
 (this, resolution.x, resolution.y);

 // Make our platformView the view for the Activity
 setContentView(platformView);

 }

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Upgrading the Game Engine

[104]

 // If the Activity is paused make sure to pause our thread
 @Override
 protected void onPause() {
 super.onPause();
 platformView.pause();
 }

 // If the Activity is resumed make sure to resume our thread
 @Override
 protected void onResume() {
 super.onResume();
 platformView.resume();
 }
}

Obviously, until we create our PlatformView class, there will be
errors in our PlatformActivity class's code.

Locking the layout to landscape
Just as we did for the last project, we will make sure the game runs in the
landscape mode only. We will make our AndroidManifest.xml file force our
PlatformActivity class to run with a full screen, and we will also lock it to a
landscape layout. Let's make these changes:

1. Open the manifests folder now and double-click the AndroidManifest.xml
file to open it in the code editor.

2. In the AndroidManifest.xml file, find the following line of code:
android:name=".PlatformActivity"

3. Immediately after it, type or copy and paste these two lines to make
PlatformActivity run full screen and lock it in the landscape orientation.

android:theme="@android:style/Theme.NoTitleBar.Fullscreen"
android:screenOrientation="landscape"

Now, we can move on to the real guts of our game and see how we can implement
all these improvements we talked about.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[105]

The PlatformView class
This class, by the time it is completed, will be dependent on many other classes. I
don't want to just present each class in turn, as this would be quite hard to follow
and exactly what code implements which feature will become confusing. Instead,
we will look at, and code, each feature in turn, as we require them, and then revisit
many of the classes multiple times to add more features. This will keep the focus on
the specific purpose of each part of the code.

Having said this, great care has been taken so that although we will revisit many of
these classes multiple times, we won't be constantly deleting code, just adding to
it. When we add to it, the code will be presented in its proper context with the new
parts highlighted among the existing code.

With regard to the structure of the classes, they are designed to be as minimal as
possible, while at the same time, not restricting your potential to easily add features
and extend the code.

This is not a lesson in game engine design, but more a lesson in seeing how many
different features we can learn to implement and cram into four chapters, without
the code becoming unmanageable.

If you plan to build very large-scale games, especially when working as a team, then
a more robust design will be necessary. This more robust design will also mean a
whole lot of extra classes, interfaces, packages, and so on.

If this type of discussion interests you, I highly recommend the book,
Beginning Android Games by Mario Zechner, published by APRESS.
Mario is the founder/creator of the LibGDX cross-platform game
library, and his book goes into great detail about the design patterns
required to build a highly extensible and reusable code base for games.
The only downside to the great design detail that this book has, is that
it would take around 600 pages to build a simple retro Snake game.

First, let's create the class. Right-click on the package name in the Android Studio
project explorer and navigate to New | Java Class. Call the new class PlatformView.
Delete the autogenerated contents of the class, as we will add our own code soon.

We will continue to add code to this class over the entirety of the project. The
full extent of the code that we add to the class in this chapter can be found in the
download bundle at Chapter5/PlatformView.java.

We need a class that can manage our level. Let's call it LevelManager.

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Upgrading the Game Engine

[106]

We also need a class that can hold the data for our level, as we can then extend
it each time we create a new/different level design. Let's call the parent class
LevelData, and our first real level for Bob to escape from, LevelCave.

Furthermore, as this game is going to have many enemies, props, and terrain types,
we are going to need a cleaner system of managing them all. We need a fairly generic
GameObject class, which all the different game objects can extend. We can then
manage them really easily in our update and draw methods.

We will also, as a matter of necessity, build a slightly more complicated method of
detecting the players input. We will create an InputController class to delegate all
of the code from PlatformView. However, the details of this class we will not see,
until we have fully fleshed out our Player object to represent the player in the next
chapter.

We can quickly code our basic PlatformView class with very similar code to the first
project, but with a few notable exceptions that we will discuss.

The basic structure of PlatformView
Here are the necessary imports and our member variables to get us started. We will
add to these a fair bit as the project continues.

Note that we also declare three new object types, lm that will be our LevelManager
class, vp that will be our Viewport class, and ic that is our InputController class.
We will begin working on some of these in this chapter. These declarations will of
course show an error until we implement their respective classes.

import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Rect;
import android.util.Log;
import android.view.SurfaceHolder;
import android.view.SurfaceView;

public class PlatformView extends SurfaceView
 implements Runnable {

 private boolean debugging = true;
 private volatile boolean running;
 private Thread gameThread = null;

 // For drawing

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[107]

 private Paint paint;
 // Canvas could initially be local.
 // But later we will use it outside of draw()
 private Canvas canvas;
 private SurfaceHolder ourHolder;

 Context context;
 long startFrameTime;
 long timeThisFrame;
 long fps;

 // Our new engine classes
 private LevelManager lm;
 private Viewport vp;
 InputController ic;

Here, we have our PlatformView constructor. At this stage, it does nothing new, in
fact, it has less code than our TDView constructor but it will soon be enhanced. For
now, enter the code as shown:

PlatformView(Context context, int screenWidth,
 int screenHeight) {

 super(context);
 this.context = context;

 // Initialize our drawing objects
 ourHolder = getHolder();
 paint = new Paint();
}

Here is our thread's run method. Note that before the call to update(), we get
the current time in milliseconds and put it in the startFrameTime long variable.
Then after draw() has completed, we make another call to get the system time and
measure how many milliseconds have elapsed since the frame started. We then carry
out the calculation fps = 1000 / thisFrameTime, which gives us the number of
frames per second our game ran at, in that last frame. This value is stored in the
fps variable. We will be using this all over the place as we proceed with the game.
Code the run method that we have just discussed, like this:

@Override
public void run() {

 while (running) {

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Upgrading the Game Engine

[108]

 startFrameTime = System.currentTimeMillis();

 update();
 draw();

 // Calculate the fps this frame
 // We can then use the result to
 // time animations and movement.
 timeThisFrame = System.currentTimeMillis() - startFrameTime;
 if (timeThisFrame >= 1) {
 fps = 1000 / timeThisFrame;
 }
 }
}

Later in the chapter, we will see how we manage the extra complexity of multiple
object types and update them when necessary. For now, just add an empty update
method to the PlatformView class like this:

private void update() {
 // Our new update() code will go here
}

Here, we see the familiar parts of our draw method. Later in this chapter, we will see
some of the new code. For now, add the basics of the draw method as shown next as
this will remain unchanged:

private void draw() {

 if (ourHolder.getSurface().isValid()){
 //First we lock the area of memory we will be drawing to
 canvas = ourHolder.lockCanvas();

 // Rub out the last frame with arbitrary color
 paint.setColor(Color.argb(255, 0, 0, 255));
 canvas.drawColor(Color.argb(255, 0, 0, 255));

 // New drawing code will go here

 // Unlock and draw the scene
 ourHolder.unlockCanvasAndPost(canvas);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[109]

The last parts of the first phase of putting together our view is the pause and resume
methods, which are called by PlatformActivity when the corresponding Activity
lifecycle methods are called by the operating system. They are unchanged from the
previous project, but here they are again for the sake of completeness and being able
to follow along easily. Add these methods to the PlatformView class:

// Clean up our thread if the game is interrupted
public void pause() {
 running = false;
 try {
 gameThread.join();
 } catch (InterruptedException e) {
 Log.e("error", "failed to pause thread");
 }
}

// Make a new thread and start it
// Execution moves to our run method
public void resume() {
 running = true;
 gameThread = new Thread(this);
 gameThread.start();

}

}// End of PlatformView

Now, we have the basic outline of our view coded and ready. Let's take our first look
at the GameObject class.

The GameObject class
We know that we need a parent class to hold the vast majority of our game objects as
we want to improve on the inflexibility and code duplication of the last project. From
the previous project, we also know many of the properties and methods it will require.

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Upgrading the Game Engine

[110]

First, we need a simple class to represent the world location of all our future
GameObject classes. This class will hold a detailed location on both the x and y
axis. Note that these are totally independent to the coordinates of the pixels of the
device on which our game will run. We can think of the z coordinate as a layer
number. The lower numbers get drawn first. Therefore, create a new Java class, call it
Vector2Point5D, and enter this code:

public class Vector2Point5D {

 float x;
 float y;
 int z;
}

Now, let's have a look at, and code the basic working outline of, the GameObject
class, and then throughout the project, we can come back and add extra features.
Create a new Java class and call it GameObject. Let's look at the code we need to start
to make this class useful. First, we import the classes we need.

import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;

When we code GameObject itself, note that the class does not provide a constructor
as this will be handled differently, depending on the specific GameObject that we
are implementing.

The first variable you will notice in the code is worldLocation, which, as you may
expect, is of type Vector2Point5D. We then have two float members, which will
hold the width and height of the GameObject class. Next up, we have the Boolean
variables active and visible which will be used, perhaps to label an object when
it is active, visible, or otherwise. We will begin to see later in the chapter how this is
of benefit.

We will also need to know how many frames of internal animation any given object
has. The default will be 1, so animFrameCount is initialized accordingly.

We then have a char class called type. This type variable will determine exactly
what any particular GameObject might be. It will be used extensively. The last
member variable for now is bitmapName. We will see that it will become useful
to know the name of the graphic, which represents the appearance of each of our
individual objects. Add the member variables we have just discussed:

public abstract class GameObject {

 private Vector2Point5D worldLocation;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[111]

 private float width;
 private float height;

 private boolean active = true;
 private boolean visible = true;
 private int animFrameCount = 1;
 private char type;

 private String bitmapName;

Now, we can look at the first part of the functionality of GameObject. We have
the abstract method update(). The plan was that all objects will need to update
themselves. Turns out that this was over ambitious in just four chapters, and some of
our objects (mainly the platforms and scenery) will just provide an empty update()
implementation. However, there is nothing to stop you making the scenery more
interactive than we have time for now, or make the platforms more dynamic and
adventurous once we see how things work. Add the abstract update method:

public abstract void update(long fps, float gravity);

We handle our methods that manage our graphics. We have a getter to retrieve
bitmapName. Then, we have prepareBitmap(), which uses the string bitmapName to
make an Android resource ID from a .png image file. This file must be present in the
drawable folder of the project. A bitmap is created as we have seen before.

Now our prepareBitmap method does something new. It uses the
createScaledBitmap method to change the size of the bitmap we just created.
It not only uses the animFrameCount, which we already discussed, but also the
pixelsPerMetre variable, which is a parameter of the method.

The idea being, that each device has a pixelsPerMetre value that is appropriate for
the device, which will help us create an identical view of the game across devices
with different resolutions. We will see exactly where we get this pixelsPerMetre
value from, when we discuss the Viewport class. Enter the following methods in the
GameObject class:

public String getBitmapName() {
 return bitmapName;
}

public Bitmap prepareBitmap(Context context,
 String bitmapName,
 int pixelsPerMetre) {

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Upgrading the Game Engine

[112]

 // Make a resource id from the bitmapName
 int resID = context.getResources().
 getIdentifier(bitmapName,
 "drawable", context.getPackageName());

 // Create the bitmap
 Bitmap bitmap = BitmapFactory.
 decodeResource(context.getResources(),
 resID);

 // Scale the bitmap based on the number of pixels per metre
 // Multiply by the number of frames in the image
 // Default 1 frame
 bitmap = Bitmap.createScaledBitmap(bitmap,
 (int) (width * animFrameCount * pixelsPerMetre),
 (int) (height * pixelsPerMetre),
 false);

 return bitmap;
}

We also want to be able to know where in the world each GameObject is and, of course,
to set where in the world it is. Here are a getter and a setter, which do just that.

 public Vector2Point5D getWorldLocation() {
 return worldLocation;
 }

 public void setWorldLocation(float x, float y, int z) {
 this.worldLocation = new Vector2Point5D();
 this.worldLocation.x = x;
 this.worldLocation.y = y;
 this.worldLocation.z = z;
 }

We also want to be able to both, get and set many of the member variables we have
already discussed. These getters and setters will do that.

 public void setBitmapName(String bitmapName){
 this.bitmapName = bitmapName;
 }

 public float getWidth() {
 return width;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[113]

 }

 public void setWidth(float width) {
 this.width = width;
 }

 public float getHeight() {
 return height;
 }

 public void setHeight(float height) {
 this.height = height;
 }

Furthermore, we will want to check and change the status of our active and visible
variables as well.

 public boolean isActive() {
 return active;
 }

 public boolean isVisible() {
 return visible;
 }

 public void setVisible(boolean visible) {
 this.visible = visible;
 }

Set and get type of each GameObject.

 public char getType() {
 return type;
 }

 public void setType(char type) {
 this.type = type;
 }

}// End of GameObject

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Upgrading the Game Engine

[114]

Now, we will create our first of many child classes from GameObject. Right-click on
the package name in the Android Studio explorer and create a class called Grass.
This will be our first basic tile type that the player can walk about on.

This straightforward code uses the constructor to initialize height, width, type,
and its location in the game world. Note that all this information is passed in as
parameters to the constructor. The only thing the Grass class "knows", and one of the
few things that will differentiate it from some of the other simple GameObject child
classes, is the value used for bitmapName, which in this case is turf.

As discussed previously, we also provide an empty implementation of the update
method:

public class Grass extends GameObject {

 Grass(float worldStartX, float worldStartY, char type) {
 final float HEIGHT = 1;
 final float WIDTH = 1;

 setHeight(HEIGHT); // 1 metre tall
 setWidth(WIDTH); // 1 metre wide

 setType(type);

 // Choose a Bitmap
 setBitmapName("turf");

 // Where does the tile start
 // X and y locations from constructor parameters
 setWorldLocation(worldStartX, worldStartY, 0);
 }

 public void update(long fps, float gravity) {}
}

Now, add the turf.png graphic from the Chapter5/drawable folder in the
download bundle to the drawable folder in Android Studio.

Finally, we will do an absolute barebones implementation of our Player class that
will also extend GameObject. We will not be putting any functionality into this class
just an x and y world location. This is so that the Viewport class, which we will
implement next, knows where to focus.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[115]

Here is the Player class, which will represent Bob our hero. The class at this stage is
as simple and straightforward as, and nearly identical to the Grass class. This will
change and evolve substantially as we progress. Note that we set the type to p.

import android.content.Context;

public class Player extends GameObject {

 Player(Context context, float worldStartX,
 float worldStartY, int pixelsPerMetre) {

 final float HEIGHT = 2;
 final float WIDTH = 1;

 setHeight(HEIGHT); // 2 metre tall
 setWidth(WIDTH); // 1 metre wide

 setType('p');

 // Choose a Bitmap
 // This is a sprite sheet with multiple frames
 // of animation. So it will look silly until we animate it
 // In chapter 6.

 setBitmapName("player");

 // X and y locations from constructor parameters

 setWorldLocation(worldStartX, worldStartY, 0);

 }

 public void update(long fps, float gravity) {

 }
}

Add the player.png graphic from the drawable folder in the download bundle
to the drawable folder in Android Studio. The graphic is a multiframe sprite sheet,
so it won't display nicely until we animate it in Chapter 6, Platformer – Bob, Beeps,
and Bumps , but it will serve its purpose as a placeholder for now.

As we will see next, the view of the game world that the player sees, will focus on
Bob, as you will probably expect.

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Upgrading the Game Engine

[116]

The view through a viewport
A viewport can be thought of as the movie camera that follows the action of our
game. It defines the area of the game world that is to be shown to the player.
Typically, it will center on Bob.

It also serves the combined function of making our draw method more efficient by
determining which objects are inside and outside the player's field of vision. There
is no point drawing or processing a bunch of enemies, if they are not relevant at any
given moment.

This will significantly speed up tasks like collision detection by implementing a first
phase of detection by removing objects off screen from the list of objects to check for
collisions, and it is surprisingly simple to do.

Furthermore, our Viewport class will have the task of translating game world
coordinates into appropriate pixel coordinates for drawing on the screen. We will
also see how this class calculates the pixelsPerMetre value that our GameObject
class used in the prepareBitmap method.

The Viewport class really is an all singing and dancing thing. So let's get coding.

First, we will declare a whole bunch of useful variables. We have another
Vector2Point5D, which will just be used to represent whatever point in the world is
currently the central focus in the viewport. Then, we have separate integer values for
pixelsPerMetreX and pixelsPerMetreY.

Actually, in this implementation, there is no distinction between
pixelsPerMetrX and pixelsPerMetreY. However, the
Viewport class can be upgraded to take into account different ratios
of width to height of the device, based on screen size, rather than just
resolution. We don't do so in this implementation.

Next, we simply have the resolution of the screen in both axes: screenXResolution
and screenYResolution. We then have screenCentreX and screenCentreY, which
are basically the two previous variables divided by two to find the middle.

In our list of declared variables, we have metresToShowX and metresToShowY that
will be the number of meters we will squash into our viewport. Changing these
values will show more or less of the game world on screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[117]

The last member, we will declare at this point, is the int numClipped. This we
will use to output debugging text to see what effect our Viewport class is having
with regard to making drawing, updates, and multiphase collision detection, more
efficient.

Create a new class called Viewport and declare the variables we have just discussed:

import android.graphics.Rect;

public class Viewport {
 private Vector2Point5D currentViewportWorldCentre;
 private Rect convertedRect;
 private int pixelsPerMetreX;
 private int pixelsPerMetreY;
 private int screenXResolution;
 private int screenYResolution;
 private int screenCentreX;
 private int screenCentreY;
 private int metresToShowX;
 private int metresToShowY;
 private int numClipped;

Now, let's look at the constructor. The constructor just needs to know the resolution
of the screen. This is obtained in parameters x and y, which, of course, we assign to
screenXResolution and screenYResolution, respectively.

Then, as previously suggested, we divide those two previous variables by two and
assign the results to screenCentreX and screenCentreY, respectively.

The pixelsPerMetreX and pixelsPerMetreY are calculated by dividing by 32 and
18 (again, respectively), so a device with a resolution of 840 x 400 pixels will have
pixels per meter x/y of 32/22. Now, we have variables that refer to the number of
pixels of screen real estate on the current device that represents a meter of our game
world. We will see a number of times in our code, where this will be useful.

We will actually draw a slightly wider area than this, to make sure we don't have any
unsightly gaps/lines around the edge of the screen and assign 34 to metresToShowX
and 20 to metresToShowY. Now, we have variables that refer to the amount of our
game world that we will draw each frame.

Once we have some screen output, you can experiment with these
values to create a more or less zoomed-in or zoomed-out experience
for the player.

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Upgrading the Game Engine

[118]

Nearing the end of the constructor, we create a new Rect object called
convertedRect that we will see in action soon. We call new() on
currentViewportWorldCentre, so it is ready for action shortly.

 Viewport(int x, int y){

 screenXResolution = x;
 screenYResolution = y;

 screenCentreX = screenXResolution / 2;
 screenCentreY = screenYResolution / 2;

 pixelsPerMetreX = screenXResolution / 32;
 pixelsPerMetreY = screenYResolution / 18;

 metresToShowX = 34;
 metresToShowY = 20;

 convertedRect = new Rect();
 currentViewportWorldCentre = new Vector2Point5D();

}

If some of the screenshots throughout this project look slightly
different to the results you get, it is because some images have been
taken using different viewport settings to highlight different aspects
of the game world.

The first method we write for the Viewport class is setWorldCentre(). It receives
an x and a y parameter, which is promptly assigned as the currentWorldCentre. We
need this method because of course the player will be moving around in the world,
and we need to let the Viewport class know where Bob is. Also, as we will see in
Chapter 8, Putting It All together, we will also have a situation where we don't want
Bob as the center of attention.

void setWorldCentre(float x, float y){
 currentViewportWorldCentre.x = x;
 currentViewportWorldCentre.y = y;
}

Now, a few simple getters and setters that will be useful to us as we progress.

public int getScreenWidth(){
 return screenXResolution;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[119]

}

public int getScreenHeight(){
 return screenYResolution;
}

public int getPixelsPerMetreX(){
 return pixelsPerMetreX;
}

We fulfil one of the primary roles of the Viewport class with the worldToScreen()
method. As the name suggests, this is the method that converts the locations of
all the objects currently in the visible viewport from world coordinates to pixel
coordinates that can actually be drawn to the screen. It returns our previously
prepared rectToDraw object as the result.

This is how worldToScreen() works. It receives the x and y world locations of an
object along with that object's width and height. With these values, each in turn,
subtracts the objects world coordinate multiplied by the pixels per meter for the
current screen, from the appropriate current world viewport center (x or y). Then,
for the left and top coordinates of the object, the result is subtracted from the pixel
screen center value and for the bottom and right coordinates, it is added.

These values are then packed into the left, top, right, and bottom values of
convertedRect and returned to the draw method of PlatformView. Add the
worldToScreen method to the Viewport class:

public Rect worldToScreen(
 float objectX,
 float objectY,
 float objectWidth,
 float objectHeight){

 int left = (int) (screenCentreX -
 ((currentViewportWorldCentre.x - objectX)
 * pixelsPerMetreX));

 int top = (int) (screenCentreY -
 ((currentViewportWorldCentre.y - objectY)
 * pixelsPerMetreY));

 int right = (int) (left +
 (objectWidth *
 pixelsPerMetreX));

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Upgrading the Game Engine

[120]

 int bottom = (int) (top +
 (objectHeight *
 pixelsPerMetreY));

 convertedRect.set(left, top, right, bottom);

 return convertedRect;
}

Now, we implement the second primary function of the Viewport class, removing
objects that are currently of no interest to us. We call this clipping, and the method
we will call; clipObjects().

Once again, we receive as parameters the x, y, width, and height of an object. The
test starts by assuming that we want to clip the current object and we assign true to
clipped.

Then, the four nested if statements test whether each and every point of the object is
within the bounds of the related side of the viewport. If it is, we set clipped to false.
Some of the levels we will design have in excess of a thousand objects, but we will
see that we rarely need to process (update, collision detection, and draw) more than a
quarter of them in any given frame. Enter the code for the clipObjects method:

public boolean clipObjects(float objectX,
 float objectY,
 float objectWidth,
 float objectHeight) {

 boolean clipped = true;

 if (objectX - objectWidth <
 currentViewportWorldCentre.x + (metresToShowX / 2)) {

 if (objectX + objectWidth >
 currentViewportWorldCentre.x - (metresToShowX / 2)) {

 if (objectY - objectHeight <
 currentViewportWorldCentre.y +
 (metresToShowY / 2)) {

 if (objectY + objectHeight >
 currentViewportWorldCentre.y -
 (metresToShowY / 2)){

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[121]

 clipped = false;
 }
 }

 }

 }

 // For debugging
 if(clipped){
 numClipped++;
 }

 return clipped;
}

Now, we provide access to the numClipped variable so that it can be read and reset
to zero each frame.

public int getNumClipped(){
 return numClipped;
}

public void resetNumClipped(){
 numClipped = 0;
}

}// End of Viewport

Let's declare and initialize our Viewport object. Add this code right after we
initialize our Paint object in the PlatformView constructor. The new code is shown
highlighted here:

 // Initialize our drawing objects
 ourHolder = getHolder();
 paint = new Paint();

 // Initialize the viewport
 vp = new Viewport(screenWidth, screenHeight);

}// End of constructor

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Upgrading the Game Engine

[122]

We can now describe and position objects in our game world and focus on the
precise parts of the world we are interested in. Let's see how we will actually get
our objects into that world, so we can then update and draw them as we have done
before. We will also look at the concept of a level.

Creating the levels
Here, we will see how to build our LevelManager, LevelData, and our first real
level, LevelCave.

The LevelManager class will eventually need a copy of our InputController class.
Therefore, in order to try and keep to our intentions of not having to delete any code,
we will include a parameter for InputController in our LevelManager constructor.

Let's quickly create a blank template for our InputController class. Create a new
class in the usual way and call it InputController. Add this code:

public class InputController {
 InputController(int screenWidth, int screenHeight) {
 }
}

Now, let's look at our, initially, very simple LevelData class. Create a new class, call
it LevelData, and add this code. At this stage, it holds just an ArrayList object for
Strings.

import java.util.ArrayList;

public class LevelData {
 ArrayList<String> tiles;

 // This class will evolve along with the project

 // Tile types
 // . = no tile
 // 1 = Grass

}

Next, we can start on what will eventually become our first playable level. Create a
new class, call it LevelCave, and add this code:

import java.util.ArrayList;

public class LevelCave extends LevelData{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[123]

 LevelCave() {
 tiles = new ArrayList<String>();
 this.tiles.add("p...");
 this.tiles.add("..");
 this.tiles.add(".....................111111...................");
 this.tiles.add("..");
 this.tiles.add("............111111............................");
 this.tiles.add("..");
 this.tiles.add(".........1111111..............................");
 this.tiles.add("..");
 this.tiles.add("..");
 this.tiles.add("..");
 this.tiles.add("..............................11111111........");
 this.tiles.add("..");
 }
}

The position of p for player in the LevelCave file is arbitrary. As
long as it is on there, the Player object will be initialized. The actual
spawn location of the player character is determined by the call to
a loadLevel method, as we will soon see. I usually put the p for
player as the first element on the first line of the map, then it is less
likely to be forgotten.

Now, let's talk about how this level design is going to work. We will enter alpha-
numeric characters in the LevelCave class within the tiles.add("..." parts of
the code. We will enter a different alpha-numeric character depending on which
GameObject we want to place into the level. At the moment, we just have p to
represent the Player object, a 1 to represent a Grass object, and a period (.) to
represent an empty space of one game world meter square.

This implies that the positioning of the Grass objects with the 1
character in the previous block of code can be arranged exactly how
you like. This is the case, and whenever we look at the code for our
LevelCave class please feel free to improvise and experiment as
you like.

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Upgrading the Game Engine

[124]

As the project continues, we will add more than twenty different GameObject child
classes. Some will be inanimate like Grass, others will be thinking, aggressive
enemies. All will be placeable within our level design.

Now, we can implement the class to manage our levels. Create a new Java class and
call it LevelManager. Enter the code for the LevelManager class as we go through,
and discuss it a block at a time.

First, a few import directives.

import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.Rect;
import java.util.ArrayList;

Now, the constructor is where we have a String level to hold the name of the level,
mapWidth and mapHeight to store the width and height in game world meters of the
current level, a Player object because we know we will always have one of them,
and an int type called playerIndex.

Soon, we will have an ArrayList object of many GameObject classes, and it will be
handy to always have the index of the Player object.

Moving on, we have the Boolean playing because we will need to know when the
game is being played or being paused and a float called gravity.

In the context of this project, gravity will not be used to its full
potential, but it can easily be manipulated so that different levels
have a different gravity. This is why it is in the LevelManager class.

Finally, we declare an object of type LevelData, an ArrayList object to hold all
our GameObject objects, an ArrayList object to hold representations of the players
control buttons and a regular array to hold the majority of all the Bitmap objects we
will need.

public class LevelManager {

 private String level;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[125]

 int mapWidth;
 int mapHeight;

 Player player;
 int playerIndex;

 private boolean playing;
 float gravity;

 LevelData levelData;
 ArrayList<GameObject> gameObjects;

 ArrayList<Rect> currentButtons;
 Bitmap[] bitmapsArray;

Then, in the constructor, we examine the signature and see that it receives a Context
object, pixelsPerMetre that will have been determined when the Viewport class
was constructed, screenWidth again direct from the Viewport class, a copy of our
InputController class, and then the name of the level to load. The int parameters,
px and py, are the starting coordinates for the player.

We assign the level parameter to our member level, then we switch to determine
which class will be our current level. Of course, at the moment, we only have
LevelCave.

Then, we initialize our gameObject ArrayList and our bitmapsArray. We then call
loadMapData(), which is a method we will write shortly. After this, we set playing
to true, and finally we have a getter method to find out what the state of playing is.
Enter the code we have just discussed in the LevelManager class:

public LevelManager(Context context,
 int pixelsPerMetre, int screenWidth,
 InputController ic,
 String level,
 float px, float py) {

 this.level = level;

 switch (level) {
 case "LevelCave":
 levelData = new LevelCave();
 break;

 // We can add extra levels here

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Upgrading the Game Engine

[126]

 }

 // To hold all our GameObjects
 gameObjects = new ArrayList<>();

 // To hold 1 of every Bitmap
 bitmapsArray = new Bitmap[25];

 // Load all the GameObjects and Bitmaps
 loadMapData(context, pixelsPerMetre, px, py);

 // Ready to play
 playing = true;
}

public boolean isPlaying() {
 return playing;
}

Now, we have a really simple method which will enable us to get any Bitmap
object based on the type of GameObject we are currently dealing with. This way,
each GameObject does not have to hold its own Bitmap object. For example, we can
design a level with hundreds of Grass objects. This can easily use up the memory of
even a modern tablet.

Our getBitmap method takes an int value as an index and returns a Bitmap object.
We will see how we access the appropriate value for index in the next method:

 // Each index Corresponds to a bitmap
 public Bitmap getBitmap(char blockType) {

 int index;
 switch (blockType) {
 case '.':
 index = 0;
 break;

 case '1':
 index = 1;
 break;

 case 'p':
 index = 2;
 break;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[127]

 default:
 index = 0;
 break;
 }// End switch

 return bitmapsArray[index];

 }// End getBitmap

This next method will enable us to get the index with which to call the getBitmap
method. As long as the char cases correspond with the type values held by the
various GameObject child classes we create, and the index returned by this method
matches the index of the appropriate Bitmap held in the bitmapsArray, we will only
ever need one copy of each Bitmap object.

// This method allows each GameObject which 'knows'
// its type to get the correct index to its Bitmap
// in the Bitmap array.
public int getBitmapIndex(char blockType) {

 int index;
 switch (blockType) {
 case '.':
 index = 0;
 break;

 case '1':
 index = 1;
 break;

 case 'p':
 index = 2;
 break;

 default:
 index = 0;
 break;

 }// End switch

 return index;
 }// End getBitmapIndex()

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Upgrading the Game Engine

[128]

Now, we do the real work with the LevelManager class, and load our level from our
design. The method needs the pixelsPerMetre and the Player objects coordinates
in order to do its work. As this is a large method, the explanations and the code have
been split into a few sections.

In this first part, we simply declare an int type called index and set it to -1. As we
loop through our level design, it will help us keep track of where we are up to.

Then, we calculate the height and width of the map using the size of ArrayList and
the length of the first element of ArrayList, respectively.

// For now we just load all the grass tiles
// and the player. Soon we will have many GameObjects
private void loadMapData(Context context,
 int pixelsPerMetre,
 float px, float py) {

 char c;

 //Keep track of where we load our game objects
 int currentIndex = -1;

 // how wide and high is the map? Viewport needs to know
 mapHeight = levelData.tiles.size();
 mapWidth = levelData.tiles.get(0).length();

We enter a nested for loop starting with the first element of the first string in our
ArrayList object. We work from left to right across the first string before moving on
to the second string.

We check to see if an object other than an empty space (.) is present at the current
location, and if it is, we enter a switch block to create the appropriate object at the
designated location.

If we encounter a 1, then we add a new Grass object to ArrayList, and if we
encounter a p, we initialize the Player object at the location passed in to the
constructor of this LevelManager class. When a new Player object is created, we
also initialize our playerIndex and player object ready for future use.

for (int i = 0; i < levelData.tiles.size(); i++) {
 for (int j = 0; j <
 levelData.tiles.get(i).length(); j++) {

 c = levelData.tiles.get(i).charAt(j);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[129]

 // Don't want to load the empty spaces
 if (c != '.'){
 currentIndex++;
 switch (c) {

 case '1':
 // Add grass to the gameObjects
 gameObjects.add(new Grass(j, i, c));
 break;

 case 'p':
 // Add a player to the gameObjects
 gameObjects.add(new Player
 (context, px, py,
 pixelsPerMetre));

 // We want the index of the player
 playerIndex = currentIndex;
 // We want a reference to the player
 player = (Player)
 gameObjects.get(playerIndex);

 break;

 }// End switch

If a new object has been added to gameObjects ArrayList, we need to check if
the corresponding bitmap has been added to the bitmapsArray. If it hasn't, we
add one using the prepareBitmap method of the current GameObject class under
consideration. Here is the code to perform this check and prepare the bitmap, if
necessary:

// If the bitmap isn't prepared yet
if (bitmapsArray[getBitmapIndex(c)] == null) {

 // Prepare it now and put it in the bitmapsArrayList
 bitmapsArray[getBitmapIndex(c)] =
 gameObjects.get(currentIndex).
 prepareBitmap(context,
 gameObjects.get(currentIndex).
 getBitmapName(),
 pixelsPerMetre);

}// End if

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Upgrading the Game Engine

[130]

}// End if (c != '.'){

}// End for j

}// End for i

}// End loadMapData()

}// End LevelManager

Back in the PlatformView class, to put all our level objects to use, we call loadLevel()
just after where we initialized our Viewport class in the PlatformView constructor.
The new code has been highlighted, and the existing code is provided for context:

 // Initialize the viewport
 vp = new Viewport(screenWidth, screenHeight);

 // Load the first level
 loadLevel("LevelCave", 15, 2);

}

Of course, now we need to implement the loadLevel method within the
PlatformView class.

The loadLevel method needs to know which level to load, so the switch statement
in the LevelManager constructor can do its work, and it also needs the coordinates to
spawn our hero Bob.

We initialize our LevelManager object by calling its constructor with the viewport
data retrieved from vp and the level/player data we have just discussed.

We then create a new InputController class, again passing in some data from vp.
We will see exactly what we do with this data when we build our InputController
class in Chapter 6, Bob, Beeps, and Bumps. Finally, we call vp.setWorldCentre() and
pass it in the player's location as the coordinates. This centers the screen on Bob.

public void loadLevel(String level, float px, float py) {

 lm = null;

 // Create a new LevelManager
 // Pass in a Context, screen details, level name

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[131]

 // and player location
 lm = new LevelManager(context,
 vp.getPixelsPerMetreX(),
 vp.getScreenWidth(),
 ic, level, px, py);

 ic = new InputController(vp.getScreenWidth(),
 vp.getScreenHeight());

 // Set the players location as the world centre
 vp.setWorldCentre(lm.gameObjects.get(lm.playerIndex)
 .getWorldLocation().x,
 lm.gameObjects.get(lm.playerIndex)
 .getWorldLocation().y);
 }

We can add some code to our update method that will be first to utilize a primary
function of our new Viewport class.

The enhanced update method
At last, we can use our handy ArrayList of game objects and our Viewport
functionality to flesh out our enhanced update method. In the code that follows,
we simply use an enhanced for loop to go through each GameObject. We check if it
isActive(), and then send the object's location and dimensions to clipObjects()
wrapped in an if statement. If clipObjects() returns false, then the object is
not clipped and the object is flagged as visible by calling go.setVisible(true).
Otherwise, it is flagged as not visible calling go.setVisible(false). This is the
only aspect of any object that is updated at the moment. We will see when we run
the game, at the end of the chapter, that it is already useful. Enter the new code in the
update method:

for (GameObject go : lm.gameObjects) {
 if (go.isActive()) {
 // Clip anything off-screen
 if (!vp.clipObjects(go.getWorldLocation().x,
 go.getWorldLocation().y,
 go.getWidth(),
 go.getHeight())) {

 // Set visible flag to true
 go.setVisible(true);

 } else {

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Upgrading the Game Engine

[132]

 // Set visible flag to false
 go.setVisible(false);
 // Now draw() can ignore them

 }
 }

 }
}

The enhanced draw method
Now, we can be more precise about which objects we need to draw. First, we declare
and initialize a new Rect object called toScreen2d.

Then, we loop through our gameObjects ArrayList once for each layer starting
with the lowest layer. This isn't strictly necessary at this stage because all our objects
are, by default, currently on layer zero. We will add objects on layer -1 and 1 before
the end of the project, and we don't want to have to rewrite code if we can help it.

Next, we check if the object is visible and on the current layer. If it is, we pass the
current object's location and dimensions to the worldToScreen method, which
returns the result to our previously prepared toScreen2d Rect object. Then, we call
drawBitmap() using our bitmapArray to provide the appropriate bitmap, and pass
in the coordinates of toScreen2d. Update the draw method as highlighted:

private void draw() {

 if (ourHolder.getSurface().isValid()) {
 //First we lock the area of memory we will be drawing to
 canvas = ourHolder.lockCanvas();

 // Rub out the last frame with arbitrary color
 paint.setColor(Color.argb(255, 0, 0, 255));
 canvas.drawColor(Color.argb(255, 0, 0, 255));
 // Draw all the GameObjects
 Rect toScreen2d = new Rect();

 // Draw a layer at a time
 for (int layer = -1; layer <= 1; layer++){
 for (GameObject go : lm.gameObjects) {
 //Only draw if visible and this layer
 if (go.isVisible() && go.getWorldLocation().z
 == layer) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[133]

 toScreen2d.set(vp.worldToScreen
 (go.getWorldLocation().x,
 go.getWorldLocation().y,
 go.getWidth(),
 go.getHeight()));

 // Draw the appropriate bitmap
 canvas.drawBitmap(
 lm.bitmapsArray
 [lm.getBitmapIndex(go.getType())],
 toScreen2d.left,
 toScreen2d.top, paint);
 }
 }
}

Now, still in the draw method, we print debugging info to the screen, including the
size of our gameObjects ArrayList compared to the number of objects that were
clipped this frame.

Then, we finish the draw method by the usual call to unlockCanvasAndPost(). Note
that at the end of the if(debugging) block, we call vp.resetNumClipped to set the
numClipped variable back to zero ready for the next frame. Add this code straight
after the previous block of code in the draw method:

// Text for debugging
if (debugging) {
 paint.setTextSize(16);
 paint.setTextAlign(Paint.Align.LEFT);
 paint.setColor(Color.argb(255, 255, 255, 255));
 canvas.drawText("fps:" + fps, 10, 60, paint);

 canvas.drawText("num objects:" +
 lm.gameObjects.size(), 10, 80, paint);

 canvas.drawText("num clipped:" +
 vp.getNumClipped(), 10, 100, paint);

 canvas.drawText("playerX:" +
 lm.gameObjects.get(lm.playerIndex).
 getWorldLocation().x,
 10, 120, paint);

 canvas.drawText("playerY:" +
 lm.gameObjects.get(lm.playerIndex).

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Upgrading the Game Engine

[134]

 getWorldLocation().y,
 10, 140, paint);

 //for reset the number of clipped objects each frame
 vp.resetNumClipped();

}// End if(debugging)

// Unlock and draw the scene
ourHolder.unlockCanvasAndPost(canvas);

}// End (ourHolder.getSurface().isValid())
}// End draw()

For the first time in this project, we can actually run our game and see some results:

Note in the image the precise layout of the grass from our LevelCave design. You
can also see our squashed Bob sprite sheet and the fact that there are 28 objects,
but 10 of them have been clipped. As our levels get bigger, the ratio of clipped to
unclipped will dramatically increase in favor of the vast majority being clipped.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[135]

Summary
We have covered a lot of ground in this chapter, and now have a well fleshed-out
game engine.

As we have done much of the setup work, from now on, most of the code we add
will also have a visible (or audible) result and be much more satisfying, as we will be
able to regularly run our game to see the improvements.

In the next chapter, we will add sound effects and input detection, thus bringing Bob
to life. Then, we will see how dangerous his world can be, and will promptly add
collision detection so that he can stand on a platform.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[137]

Platformer – Bob, Beeps,
and Bumps

Now that our basic game engine is set up, we can start making some fast progress.
In this chapter, we will quickly add a SoundManager class that we will use to make
a noise wherever and whenever we please. After that, we will put some meat on the
bones of Bob and implement the core functionality we require in the Player class.
Then, we can handle the second phase (after clipping) of our multiphase collision
detection and give Bob the useful skill of being able to stand on a platform.

After we have achieved this significant feat, we will hand over control of Bob to the
player by implementing the InputController class. Bob will at last be able to run
around and jump. At the end of this chapter, we will animate Bob's sprite sheet so
he actually appears to run, rather than slide everywhere.

The SoundManager class
Throughout the next few chapters, we will be adding sound effects for various
events. Sometimes these sounds will be triggered directly in the main PlatformView
class, but other times, they will need to be triggered in more remote corners of
your code like the InputController class and even within the GameObject class
themselves. We will quickly make a simple SoundManager class that can be passed
around and used as needed when a beep is required.

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Bob, Beeps, and Bumps

[138]

Create a new Java class and call it SoundManager. This class has three main parts. In
the first part, we simply declare a SoundPool object and a bunch of int variables to
hold a reference to each sound effect. Enter the first part of the code, the declaration,
and members:

import android.content.Context;
import android.content.res.AssetFileDescriptor;
import android.content.res.AssetManager;
import android.media.AudioManager;
import android.media.SoundPool;
import android.util.Log;

import java.io.IOException;

public class SoundManager {
 private SoundPool soundPool;
 int shoot = -1;
 int jump = -1;
 int teleport = -1;
 int coin_pickup = -1;
 int gun_upgrade = -1;
 int player_burn = -1;
 int ricochet = -1;
 int hit_guard = -1;
 int explode = -1;
 int extra_life = -1;

The second part of the class is the loadSound method, which unsurprisingly loads all
the sounds into memory ready for playing. We will call this once we have initialized
a SoundManager object in the PlatformView constructor. Enter this code next:

public void loadSound(Context context){
 soundPool = new SoundPool(10, AudioManager.STREAM_MUSIC,0);
 try{
 //Create objects of the 2 required classes
 AssetManager assetManager = context.getAssets();
 AssetFileDescriptor descriptor;

 //create our fx
 descriptor = assetManager.openFd("shoot.ogg");
 shoot = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("jump.ogg");
 jump = soundPool.load(descriptor, 0);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[139]

 descriptor = assetManager.openFd("teleport.ogg");
 teleport = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("coin_pickup.ogg");
 coin_pickup = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("gun_upgrade.ogg");
 gun_upgrade = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("player_burn.ogg");
 player_burn = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("ricochet.ogg");
 ricochet = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("hit_guard.ogg");
 hit_guard = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("explode.ogg");
 explode = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("extra_life.ogg");
 extra_life = soundPool.load(descriptor, 0);

 }catch(IOException e){
 //Print an error message to the console
 Log.e("error", "failed to load sound files");

 }

}

Finally for our SoundManager class, we need to be able to play any sound we like.
This playSound method simply switches on a string passed in as a parameter.
When we have a SoundManager object, we can just call playSound() with an
appropriate string argument:

public void playSound(String sound){
 switch (sound){
 case "shoot":
 soundPool.play(shoot, 1, 1, 0, 0, 1);
 break;

 case "jump":
 soundPool.play(jump, 1, 1, 0, 0, 1);

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Bob, Beeps, and Bumps

[140]

 break;

 case "teleport":
 soundPool.play(teleport, 1, 1, 0, 0, 1);
 break;

 case "coin_pickup":
 soundPool.play(coin_pickup, 1, 1, 0, 0, 1);
 break;

 case "gun_upgrade":
 soundPool.play(gun_upgrade, 1, 1, 0, 0, 1);
 break;

 case "player_burn":
 soundPool.play(player_burn, 1, 1, 0, 0, 1);
 break;

 case "ricochet":
 soundPool.play(ricochet, 1, 1, 0, 0, 1);
 break;

 case "hit_guard":
 soundPool.play(hit_guard, 1, 1, 0, 0, 1);
 break;

 case "explode":
 soundPool.play(explode, 1, 1, 0, 0, 1);
 break;

 case "extra_life":
 soundPool.play(extra_life, 1, 1, 0, 0, 1);
 break;

 }

 }
}// End SoundManager

Declare a new object of type SoundManager after the PlatformView class declaration
after your new game engine classes from the previous chapter.

// Our new engine classes
private LevelManager lm;
private Viewport vp;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[141]

InputController ic;
SoundManager sm;

Next, initialize the SoundManager object and call loadSound() in the PlatformView
constructor as shown:

// Initialize the viewport
vp = new Viewport(screenWidth, screenHeight);

sm = new SoundManager();
sm.loadSound(context);

loadLevel("LevelCave", 15, 2);

You can create all your own sounds using BFXR or just copy mine from the
Chapter6/assets folder. Copy all the sounds to the assets folder in your Android
Studio project. Create an assets folder in the src/main folder of your project in
order to achieve this if the folder doesn't exist already.

Now, we can play sound effects wherever we like. It's time to bring our hero Bob to
life.

Introducing Bob
Here, we can add the meat to the bones of your Player class. However, this section
won't be the last time we revisit the Player class. Now, we will add the necessary
functionality to allow Bob to move. Immediately after we have done this, we will
add the code to allow the player to use the forthcoming collision detection code and
the Animation class.

First of all, we need to add some members to the Player class. The Player class
will need to know how fast it can move, when the player is pressing the left or right
controls, and if it is falling or jumping. In addition, the Player class needs to know
how long it has been jumping and how long it should jump for.

The next block of code provides variables for us to monitor all these things. We will
very soon see, how we use them to make Bob do what we want.

Now, we know what the variables are for. We can add this code right after the class
declaration as shown:

public class Player extends GameObject {

 final float MAX_X_VELOCITY = 10;
 boolean isPressingRight = false;

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Bob, Beeps, and Bumps

[142]

 boolean isPressingLeft = false;

 public boolean isFalling;
 private boolean isJumping;
 private long jumpTime;
 private long maxJumpTime = 700;// jump 7 10ths of second

Furthermore, there are some other movement-related conditions we will need to
track, but they will be useful in other classes as well. Therefore, we will add them as
members to the GameObject class. We will track the current horizontal and vertical
speed, the direction the object is facing, and whether the object can move at all with
the following variables. Add these to the GameObject class:

private float xVelocity;
private float yVelocity;
final int LEFT = -1;
final int RIGHT = 1;
private int facing;
private boolean moves = false;

Now, in the GameObject class, we will add a move method. This method simply
checks that the velocity on either of the axes is not zero and if it is, it moves the
object by changing its worldLocation object. This method uses the velocity (either
xVelocity or yVelocity) divided by the current frames per second to calculate the
distance to move each frame. This ensures that the movement will be exactly correct,
regardless of the current frames per second. It doesn't matter if our game executes
smoothly or fluctuates a bit, or how powerful or puny the CPU in the Android
device is. We will very soon call this move method from within the update method of
the Player class. Later in the project, we will call it from other classes as well.

void move(long fps){
 if(xVelocity != 0) {
 this.worldLocation.x += xVelocity / fps;
 }

 if(yVelocity != 0) {
 this.worldLocation.y += yVelocity / fps;
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[143]

Next, in the GameObject class, we have a bunch of getters and setters for the new
variables we added previously. The only part to note is that the setters for the two
velocity variables (setxVelocity and setyVelocity) check if(moves) before
actually assigning a value. Add these new getters and setters to the GameObject
class.

public int getFacing() {
 return facing;
}

public void setFacing(int facing) {
 this.facing = facing;
}

public float getxVelocity() {
 return xVelocity;
}

public void setxVelocity(float xVelocity) {
 // Only allow for objects that can move
 if(moves) {
 this.xVelocity = xVelocity;
 }
}

public float getyVelocity() {
 return yVelocity;
}

public void setyVelocity(float yVelocity) {
 // Only allow for objects that can move
 if(moves) {
 this.yVelocity = yVelocity;
 }
}

public boolean isMoves() {
 return moves;
}

public void setMoves(boolean moves) {
 this.moves = moves;
}

public void setActive(boolean active) {
 this.active = active;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Bob, Beeps, and Bumps

[144]

Now, back in the Player class constructor, we can use some of these new methods
to set up the object at creation time. Add the highlighted code to the Player
constructor:

setHeight(HEIGHT); // 2 metre tall
setWidth(WIDTH); // 1 metre wide

// Standing still to start with
setxVelocity(0);
setyVelocity(0);
setFacing(LEFT);
isFalling = false;

// Now for the player's other attributes
// Our game engine will use these
setMoves(true);
setActive(true);
setVisible(true);
//...

At last, we can make practical use of all this new code in the Player class's update
method.

First, we handle what happens when isPressingRight or isPressingLeft is true.
Of course, we still need to be able to set these variables via touches on the screen.
Very simply, this next code block sets the horizontal velocity to MAX_X_VELOCITY
if isPressingRight is true or to -MAX_X_VELOCITY if isPressingLeft is true. If
neither is true, it sets the horizontal velocity to zero, which is standing still.

public void update(long fps, float gravity) {
 if (isPressingRight) {
 this.setxVelocity(MAX_X_VELOCITY);
 } else if (isPressingLeft) {
 this.setxVelocity(-MAX_X_VELOCITY);
 } else {
 this.setxVelocity(0);
 }

Next, we check which way the player is moving and call setFacing() with either
RIGHT or LEFT as the argument.

//which way is player facing?
if (this.getxVelocity() > 0) {
 //facing right
 setFacing(RIGHT);
} else if (this.getxVelocity() < 0) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[145]

 //facing left
 setFacing(LEFT);
}//if 0 then unchanged

Now, we can handle jumping. When the player presses the jump button, if
successful, isJumping will be set to true and jumpTime will be set to whatever the
current system time is. So we can then enter the if(isJumping) block on each frame,
test how long Bob has been jumping for, and if he has not exceeded maxJumpTime
take one of two possible actions.

Action one is; if we are less than half way through the jump, the y velocity is set to
-gravity (going up). Action two is; if Bob is more than half way through the jump,
his y velocity is set to gravity (going down).

When maxJumpTime is exceeded, isJumping is set back to false until the next time
the player taps the jump button. The final else clause in the following code executes
whenever isJumping is false and sets the player's y velocity to gravity. Note that
the additional line of code that sets isFalling to true. As we will see, this variable
is used to control what happens when the player initially tries to jump and also in
parts of our collision detection code. It basically stops the player from being able to
jump in mid air.

// Jumping and gravity
if (isJumping) {
 long timeJumping = System.currentTimeMillis() - jumpTime;
 if (timeJumping < maxJumpTime) {
 if (timeJumping < maxJumpTime / 2) {
 this.setyVelocity(-gravity);//on the way up
 } else if (timeJumping > maxJumpTime / 2) {
 this.setyVelocity(gravity);//going down
 }
 } else {
 isJumping = false;
 }
} else {
 this.setyVelocity(gravity);
 // Read Me!
 // Remove this next line to make the game easier
 // it means the long jumps are less punishing
 // because the player can take off just after the platform
 // They will also be able to cheat by jumping in thin air
 isFalling = true;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Bob, Beeps, and Bumps

[146]

Immediately after we handle jumping, we call move() to update the x and y
coordinates, if they have changed.

 // Let's go!
 this.move(fps);
}// end update()

That was a bit of a mouthful, but apart from the actual controls, it is just about
everything we need to allow the player to move. We just need to call the update()
method from our PlatformView class's update method once each frame, and our
player character will spring into action.

In the update method of the PlatformView class, add the following code as shown
highlighted:

// Set visible flag to true
go.setVisible(true);

if (lm.isPlaying()) {
 // Run any un-clipped updates
 go.update(fps, lm.gravity);
}

} else {
 // Set visible flag to false
 //...

Next, we can see what is going on. Let's add some more text output to the
if(debugging) block in the draw method of PlatformView. Add the new
highlighted code as shown here:

canvas.drawText("playerY:" +
 lm.gameObjects.get(lm.playerIndex).getWorldLocation().y,
 10, 140, paint);

canvas.drawText("Gravity:" +
 lm.gravity, 10, 160, paint);

canvas.drawText("X velocity:" +
 lm.gameObjects.get(lm.playerIndex).getxVelocity(),
 10, 180, paint);

canvas.drawText("Y velocity:" +
 lm.gameObjects.get(lm.playerIndex).getyVelocity(),
 10, 200, paint);

//for reset the number of clipped objects each frame

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[147]

Why not run the game now? You have probably noticed the next issue is that the
player is gone.

This is because we now have gravity, and also the thread that calls update() runs
immediately as the application starts, even before our level and the player character
is finished being set up.

We need to do two things. First, we only want update() to run when the
LevelManager class has finished its work. Secondly, we need to update the focus of
the Viewport class in every frame so that even if the player is falling to his death (as
he will frequently) the screen will be centered on him, so we can watch his demise.

Let's start the game on paused mode so that the player isn't missing. First, we will
add a method to our LevelManager class that will switch the playing status between
playing and not playing. A good name may be switchPlayingStatus(). Add the
new method to LevelManager as shown follows:

public void switchPlayingStatus() {
 playing = !playing;
 if (playing) {
 gravity = 6;
 } else {
 gravity = 0;
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Bob, Beeps, and Bumps

[148]

Now, just delete or comment out the line of code in the LevelManager constructor
that sets playing to true. Soon, this will be handled by screen touches and the
method we just wrote:

// Load all the GameObjects and Bitmaps
loadMapData(context, pixelsPerMetre, px, py);

//playing = true;

//..

We will write a tiny bit of temporary code, just a tiny bit. We already know that
we will eventually be delegating responsibility to monitor player input to our new
InputController class. This little bit of code in the overridden onTouchEvent
method is well worth the effort because we will be able to use a pause feature right
now.

This code will toggle the playing status using the method we just wrote each time
we touch the screen. Add the overridden method to the PlatformView class. We will
eventually replace some of this code later in the chapter.

@Override
public boolean onTouchEvent(MotionEvent motionEvent) {
 switch (motionEvent.getAction() & MotionEvent.ACTION_MASK) {
 case MotionEvent.ACTION_DOWN:
 lm.switchPlayingStatus();
 break;
 }
return true;
}

You can set isPressingRight in the Player class to true, following which you can
run the game and tap the screen. We will then see the player fall like a ghost off the
bottom, while moving to the right of the screen:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[149]

Now, let's update the viewport per frame to remain centered on the player. Add this
highlighted code to the very end of the update method in the PlatformView class:

if (lm.isPlaying()) {
 //Reset the players location as the centre of the viewport
 vp.setWorldCentre(lm.gameObjects.get(lm.playerIndex)
 .getWorldLocation().x,
 lm.gameObjects.get(lm.playerIndex)
 .getWorldLocation().y);}
}// End of update()

If you run the game now, although the player still falls to his doom and to the right,
at least the screen stays focused on him to watch it happen.

We will deal with the perpetual falling problem.

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Bob, Beeps, and Bumps

[150]

Multiphase collision detection
We have seen that our player character simply falls though the world and into
oblivion. Of course we need the player to be able to stand on the platforms. Here is
what we will do.

We will provide every object that matters with a hitbox as we can then provide
methods in the Player class to test if a hitbox has made contact with the player.
Once per frame, we will send all hitboxes that have not been clipped by the viewport
to this new method where a collision can be tested for.

We do it like this for two main reasons. Firstly, by sending only unclipped hitboxes
for collision testing, we drastically reduce the number of checks, as described in
Chapter 3, Tappy Defender – Taking Flight, in the section Things that go bump – collision
detection. Secondly, by handling the checks within the Player class, we can give
the player multiple different hitboxes and respond slightly differently according to
which one is hit.

Let's create our own class for a hitbox, so we can make it just how we want it. It
needs to use float coordinates, it needs an intersects method and a bunch of
getters and setters as well. Create a new class and call it RectHitbox.

Here, we see that RectHitbox simply has a bunch of self explanatory getters and
setters. It also has the intersects method, which returns true if the RectHitbox
passed into it intersects with itself. For an explanation of how the intersects()
code works, see Chapter 3, Tappy Defender – Taking Flight. Enter the following code
into the new class:

public class RectHitbox {
 float top;
 float left;
 float bottom;
 float right;
 float height;

 boolean intersects(RectHitbox rectHitbox){
 boolean hit = false;

 if(this.right > rectHitbox.left
 && this.left < rectHitbox.right){
 // Intersecting on x axis

 if(this.top < rectHitbox.bottom
 && this.bottom > rectHitbox.top){
 // Intersecting on y as well

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[151]

 // Collision
 hit = true;
 }
 }

 return hit;
 }

 public void setTop(float top) {
 this.top = top;
 }

 public float getLeft() {
 return left;
 }

 public void setLeft(float left) {
 this.left = left;
 }

 public void setBottom(float bottom) {
 this.bottom = bottom;
 }

 public float getRight() {
 return right;
 }

 public void setRight(float right) {
 this.right = right;
 }

 public float getHeight() {
 return height;
 }

 public void setHeight(float height) {
 this.height = height;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Bob, Beeps, and Bumps

[152]

Now, we can add a RectHitbox class as a member of GameObject. Add it right after
the class declaration.

private RectHitbox rectHitbox = new RectHitbox();

Then, we add a method to initialize the hitbox and a method so that we can grab a
copy of it when needed. Add these two methods to GameObject:

public void setRectHitbox() {
 rectHitbox.setTop(worldLocation.y);
 rectHitbox.setLeft(worldLocation.x);
 rectHitbox.setBottom(worldLocation.y + height);
 rectHitbox.setRight(worldLocation.x + width);
}

RectHitbox getHitbox(){
 return rectHitbox;
}

Now for our Grass object, we add a call to setRectHitbox() and then we can start
bumping into it. Add this one line of highlighted code at the very end of the Grass
class's constructor. It is important that the call to setRectHitbox() comes after the
call to setWorldLocation() otherwise the hitbox won't be wrapped around the
block of grass.

// Where does the tile start
// X and y locations from constructor parameters
setWorldLocation(worldStartX, worldStartY, 0);
setRectHitbox();
}// End of Grass constructor

Before we can begin to comprehend the code that will do the collision checking, we
need the Player class to have its own set of hitboxes. We need to know the following
things about the player character:

• When the head bumps something above it
• When the feet land on a platform below
• When the player walks into something either side of it

To achieve this, we will create four hitboxes; one for the head, one for the feet, and
one for each of the left and right-hand sides. As they are unique to the player, we
will create the hitboxes within the Player class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[153]

Declare the four hitboxes as members just after the Player class declaration:

RectHitbox rectHitboxFeet;
RectHitbox rectHitboxHead;
RectHitbox rectHitboxLeft;
RectHitbox rectHitboxRight;

Now in the constructor, we call new RectHitbox() to prepare them. Note that we
haven't bothered assigning any values to the hitboxes. We will see how we do that
soon. Add the four calls to new() at the end of the Player constructor like this:

rectHitboxFeet = new RectHitbox();
rectHitboxHead = new RectHitbox();
rectHitboxLeft = new RectHitbox();
rectHitboxRight = new RectHitbox();

We will see were we will initialize them properly. The hitbox values in the code
that follows, have been manually estimated based on the space taken up by the
actual shape of the character within the rectangle that represents each frame of the
character. If you use a different character graphic, you will likely need to adjust the
precise values you use.

The diagram shows an approximate graphical representation of the locations that
each hitbox will be positioned at. The apparent lack of closeness for the left and right
hitboxes is because different frames of the animation are slightly wider than this one.
This is a compromise.

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Bob, Beeps, and Bumps

[154]

The code must be placed after the call to move() within the update method in the
Player class. This way, the hitboxes are updated each and every time the player
position has changed. Add the highlighted code in exactly the position shown, and
then we are one step closer to being able to start bumping in to stuff.

// Let's go!
this.move(fps);

// Update all the hitboxes to the new location
// Get the current world location of the player
// and save them as local variables we will use next
Vector2Point5D location = getWorldLocation();
float lx = location.x;
float ly = location.y;

//update the player feet hitbox
rectHitboxFeet.top = ly + getHeight() * .95f;
rectHitboxFeet.left = lx + getWidth() * .2f;
rectHitboxFeet.bottom = ly + getHeight() * .98f;
rectHitboxFeet.right = lx + getWidth() * .8f;

// Update player head hitbox
rectHitboxHead.top = ly;
rectHitboxHead.left = lx + getWidth() * .4f;
rectHitboxHead.bottom = ly + getHeight() * .2f;
rectHitboxHead.right = lx + getWidth() * .6f;

// Update player left hitbox
rectHitboxLeft.top = ly + getHeight() * .2f;
rectHitboxLeft.left = lx + getWidth() * .2f;
rectHitboxLeft.bottom = ly + getHeight() * .8f;
rectHitboxLeft.right = lx + getWidth() * .3f;

// Update player right hitbox
rectHitboxRight.top = ly + getHeight() * .2f;
rectHitboxRight.left = lx + getWidth() * .8f;
rectHitboxRight.bottom = ly + getHeight() * .8f;
rectHitboxRight.right = lx + getWidth() * .7f;

}// End update()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[155]

In the next stage, we can detect some collisions and react to them. Collisions which
only concern the player, such as falling, bumping his head, or trying to walk through
a wall are handled directly in this next method, within the Player class. Note that
the method also returns an int value to represent if there was a collision and where
on the player that collision occurred so that other collisions with things like pickups
or pits of fire can be handled outside the class.

The new checkCollisions method receives a RectHitbox as a parameter. This
will be the RectHitbox of whichever object we are currently checking against for
collisions. Add the checkCollisions method to the Player class.

public int checkCollisions(RectHitbox rectHitbox) {
 int collided = 0;// No collision

 // The left
 if (this.rectHitboxLeft.intersects(rectHitbox)) {
 // Left has collided
 // Move player just to right of current hitbox
 this.setWorldLocationX(rectHitbox.right - getWidth() * .2f);
 collided = 1;
 }

 // The right
 if (this.rectHitboxRight.intersects(rectHitbox)) {
 // Right has collided
 // Move player just to left of current hitbox
 this.setWorldLocationX(rectHitbox.left - getWidth() * .8f);
 collided = 1;
 }

 // The feet
 if (this.rectHitboxFeet.intersects(rectHitbox)) {
 // Feet have collided
 // Move feet to just above current hitbox
 this.setWorldLocationY(rectHitbox.top - getHeight());
 collided = 2;
 }

 // Now the head
 if (this.rectHitboxHead.intersects(rectHitbox)) {
 // Head has collided. Ouch!
 // Move head to just below current hitbox bottom
 this.setWorldLocationY(rectHitbox.bottom);
 collided = 3;

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Bob, Beeps, and Bumps

[156]

 }

 return collided;
}

As the previous code implies, we need to add some setter methods to the
GameObject class so that the x and y world coordinates can be changed when a
collision is detected. Add the following two methods to the GameObject class:

public void setWorldLocationY(float y) {
 this.worldLocation.y = y;
}

public void setWorldLocationX(float x) {
 this.worldLocation.x = x;
}

The final step is to select all relevant objects and test for collisions. We do this in
the update method of the PlatformView class, following which we switch to take
further actions based on which body part collides with what object type. Our switch
block will only have a default case to begin with, since we have only one possible
object type to collide with a grass platform. Note that when a collision with the feet is
detected, we set our isFalling variable to false, enabling the player to jump. Enter
the highlighted code where shown:

// Set visible flag to true
go.setVisible(true);

// check collisions with player
int hit = lm.player.checkCollisions(go.getHitbox());
if (hit > 0) {
 //collision! Now deal with different types
 switch (go.getType()) {

 default:// Probably a regular tile
 if (hit == 1) {// Left or right
 lm.player.setxVelocity(0);
 lm.player.setPressingRight(false);
 }

 if (hit == 2) {// Feet
 lm.player.isFalling = false;
 }

 break;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[157]

We will make more use of the value that gets stored in hit for further
collision-based decision making, as we progress with this project.

Let's take control of the player for real.

Player input
First, let's add some methods in the Player class that our input controller will be
able to call, then manipulate the variables that the Player class's update method
uses to move around.

We already played with the isPressingRight variable, and also have an
isPressingLeft variable. Furthermore, we want to be able to jump. If you take a
look at the Player class's update method, we already have the code to handle these
situations. We just need the player to be able to initiate the movements via touches to
the screen.

Our previous button layout design and the code we have written so far, suggests a
method for going left, a method for going right, and a method for jumping.

You will also note that we pass a copy of SoundManager into the startJump method,
which allows us to play a neat retro jumping sound, if the jump attempt is successful.
Add these three new methods to the Player class:

public void setPressingRight(boolean isPressingRight) {
 this.isPressingRight = isPressingRight;
 }

 public void setPressingLeft(boolean isPressingLeft) {
 this.isPressingLeft = isPressingLeft;
 }

 public void startJump(SoundManager sm) {
 if (!isFalling) {//can't jump if falling
 if (!isJumping) {//not already jumping
 isJumping = true;
 jumpTime = System.currentTimeMillis();
 sm.playSound("jump");
 }
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Bob, Beeps, and Bumps

[158]

Now, we can focus on the InputController class. Let's pass control from the
onTouchEvent method to our InputController class. Change the code in the
onTouchEvent method to the following in the PlatformView class:

@Override
 public boolean onTouchEvent(MotionEvent motionEvent) {
 if (lm != null) {
 ic.handleInput(motionEvent, lm, sm, vp);
 }
 //invalidate();
 return true;
 }

We have an error in our new method. This is simply because we have called the
handleInput method but not implemented it yet. We will do that now.

If you are wondering about the check for whether lm != null, that is
because the onTouchEvent method is triggered from the Android UI
thread and is not within our control. If we pass in lm and start trying to
do things with it, when it is not initialized, the game will crash.

We can now get everything that we need done within the InputController class.
Open that class now, and we will plan what we are going to do.

We need a button to go left, a button to go right, a button to jump, a button to toggle
pause, and later we will also need a button to fire a machine gun. Therefore, we
really need to highlight different areas of the screen to represent each of these tasks.

To do this, we will declare four Rect objects, one for each task. Then in the
constructor, we will define the points of these four Rect objects by carrying out some
simple calculations based on the players screen resolution.

We define some handy variables, buttonWidth, buttonHeight, and buttonPadding,
based on the device's screen resolution to help us arrange our Rect coordinates
neatly. Enter the following members and the InputController constructor as
shown next:

import android.graphics.Rect;
import android.view.MotionEvent;
import java.util.ArrayList;

public class InputController {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[159]

 Rect left;
 Rect right;
 Rect jump;
 Rect shoot;
 Rect pause;

 InputController(int screenWidth, int screenHeight) {

 //Configure the player buttons
 int buttonWidth = screenWidth / 8;
 int buttonHeight = screenHeight / 7;
 int buttonPadding = screenWidth / 80;

 left = new Rect(buttonPadding,
 screenHeight - buttonHeight - buttonPadding,
 buttonWidth,
 screenHeight - buttonPadding);

 right = new Rect(buttonWidth + buttonPadding,
 screenHeight - buttonHeight - buttonPadding,
 buttonWidth + buttonPadding + buttonWidth,
 screenHeight - buttonPadding);

 jump = new Rect(screenWidth - buttonWidth - buttonPadding,
 screenHeight - buttonHeight - buttonPadding -
 buttonHeight - buttonPadding,
 screenWidth - buttonPadding,
 screenHeight - buttonPadding - buttonHeight -
 buttonPadding);

 shoot = new Rect(screenWidth - buttonWidth - buttonPadding,
 screenHeight - buttonHeight - buttonPadding,
 screenWidth - buttonPadding,
 screenHeight - buttonPadding);

 pause = new Rect(screenWidth - buttonPadding -
 buttonWidth,
 buttonPadding,
 screenWidth - buttonPadding,
 buttonPadding + buttonHeight);

 }

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Bob, Beeps, and Bumps

[160]

We will use the four Rect objects to draw buttons on the screen. The draw method is
going to need a copy of them. Enter the code for the getButtons method to achieve
this:

public ArrayList getButtons(){
 //create an array of buttons for the draw method
 ArrayList<Rect> currentButtonList = new ArrayList<>();
 currentButtonList.add(left);
 currentButtonList.add(right);
 currentButtonList.add(jump);
 currentButtonList.add(shoot);
 currentButtonList.add(pause);
 return currentButtonList;
}

We can now handle the actual player input. This project is different to the previous
one because there are lots of different possible player actions that need to be
monitored and responded to, sometimes simultaneously. As you expect, the Android
API has the functionality to make this as easy as possible for us.

The MotionEvent class has a lot more data tucked away in it than we have seen so
far. Previously, we simply checked for the ACTION_DOWN and ACTION_UP events.
Now, we need to dig a little deeper to grab more of the event data.

In order to record and pass on the details of multiple fingers, touching, leaving, and
moving on the screen, the MotionEvent class stores them all in an array. When the
first finger of the player touches the screen, the details, coordinates, and so on, are
stored at position zero. Subsequent actions are then stored later in the array.

The position in the array related to any such finger's activity is not consistent. In
some situations, such as detecting specific gestures, this can be a problem and the
programmer needs to capture, remember, and respond to the ID of a finger, also held
in the MotionEvent class.

Fortunately in this situation, we have our clearly defined areas of the screen that
represent our buttons, and the most we will ever need to know is if the finger has
pressed or released the screen within one of these predefined areas.

We just need to find out how many fingers have caused events and are therefore
stored in the array by calling motionEvent.getPointerCount(). We then loop
through each of these events while providing a switch block to handle them,
whatever area of the screen, where ACTION_DOWN or ACTION_UP has occurred. It
won't matter which position in the array our event is stored at, as long as we detect it
and respond to it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[161]

The only other thing we need to know, before we can code our solution, is that the
subsequent actions in the array are stored as ACTION_POINTER_DOWN and ACTION_
POINTER_UP; therefore, with each pass through the loop, that we will shortly code,
we need to check and handle both ACTION_DOWN and ACTION_POINTER_DOWN.

After all this talk, here is our handleInput method that gets called every time the
screen is touched or released:

public void handleInput(MotionEvent motionEvent,LevelManager l,
 SoundManager sound, Viewport vp){

 int pointerCount = motionEvent.getPointerCount();

 for (int i = 0; i < pointerCount; i++) {

 int x = (int) motionEvent.getX(i);
 int y = (int) motionEvent.getY(i);

 if(l.isPlaying()) {
 switch (motionEvent.getAction() &
 MotionEvent.ACTION_MASK) {

 case MotionEvent.ACTION_DOWN:
 if (right.contains(x, y)) {
 l.player.setPressingRight(true);
 l.player.setPressingLeft(false);

 } else if (left.contains(x, y)) {
 l.player.setPressingLeft(true);
 l.player.setPressingRight(false);

 } else if (jump.contains(x, y)) {
 l.player.startJump(sound);

 } else if (shoot.contains(x, y)) {

 } else if (pause.contains(x, y)) {
 l.switchPlayingStatus();
 }

 break;

 case MotionEvent.ACTION_UP:

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Bob, Beeps, and Bumps

[162]

 if (right.contains(x, y)) {
 l.player.setPressingRight(false);

 } else if (left.contains(x, y)) {
 l.player.setPressingLeft(false);
 }

 break;

 case MotionEvent.ACTION_POINTER_DOWN:
 if (right.contains(x, y)) {
 l.player.setPressingRight(true);
 l.player.setPressingLeft(false);

 } else if (left.contains(x, y)) {
 l.player.setPressingLeft(true);
 l.player.setPressingRight(false);

 } else if (jump.contains(x, y)) {
 l.player.startJump(sound);

 } else if (shoot.contains(x, y)) {
 //Handle shooting here

 } else if (pause.contains(x, y)) {
 l.switchPlayingStatus();
 }

 break;

 case MotionEvent.ACTION_POINTER_UP:
 if (right.contains(x, y)) {
 l.player.setPressingRight(false);
 //Log.w("rightP:", "up");

 } else if (left.contains(x, y)) {
 l.player.setPressingLeft(false);
 //Log.w("leftP:", "up");

 } else if (shoot.contains(x, y)) {
 //Handle shooting here
 } else if (jump.contains(x, y)) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[163]

 //Handle more jumping stuff here later
 }

 break;
}// End if(l.playing)

}else {// Not playing
 //Move the viewport around to explore the map
 switch (motionEvent.getAction() & MotionEvent.ACTION_MASK) {

 case MotionEvent.ACTION_DOWN:

 if (pause.contains(x, y)) {
 l.switchPlayingStatus();
 //Log.w("pause:", "DOWN");
 }

 break;
 }
 }
 }
}
}

If you are wondering why we bothered to set up two sets of control
code, one for playing and one for not playing, it is because in Chapter
8, Putting It All Together, we will add a cool new feature for the game
while it is paused. Of course, the togglePlayingStatus method did
not need to be done like this, and it would have worked fine without
the test for the status of playing. It just saves us making minor intricate
amendments to our code later on.

Now all we need to do is open up the PlatformView class, grab a copy of the
array with all the control buttons in, and draw them to the screen. We use the
drawRoundRect method to draw neat curved-corner rectangles to represent the areas
of the screen that will respond to the player's touches. Enter this code in the draw
method right before the call to unlockCanvasAndPost():

//draw buttons
paint.setColor(Color.argb(80, 255, 255, 255));
ArrayList<Rect> buttonsToDraw;
buttonsToDraw = ic.getButtons();

for (Rect rect : buttonsToDraw) {
 RectF rf = new RectF(rect.left, rect.top,

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Bob, Beeps, and Bumps

[164]

 rect.right, rect.bottom);

 canvas.drawRoundRect(rf, 15f, 15f, paint);
}

Also, right before we call unlockCanvasAndPost(), let's draw a simple pause screen
so that we know when the game is paused or playing.

//draw paused text
if (!this.lm.isPlaying()) {
 paint.setTextAlign(Paint.Align.CENTER);
 paint.setColor(Color.argb(255, 255, 255, 255));

 paint.setTextSize(120);
 canvas.drawText("Paused", vp.getScreenWidth() / 2,
 vp.getScreenHeight() / 2, paint);
}

You can now jump and walk all over the place and a nice retro jumping sound
plays as well. Why not add some more grass to the scene by editing LevelCave
and replacing a few period characters (.) with a few more 1 characters. The next
screenshot shows that the player has been jumping around a bit as well as the
buttons used for controls:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[165]

We will design some real-playable levels, as well as link
them together in Chapter 8, Putting It All Together. For now,
just do whatever seems like fun with LevelCave.

Now, we can get rid of that ugly squashed player graphic and make a neat little
animation out of it.

Animating Bob
Sprite sheet animations work by quickly changing the image drawn to the screen.
Exactly like a child may draw the phases of a stick-man moving on the corner of a
book, and then quickly flicking through it to make it appear to move.

The frames of Bob's animation are already contained within the player.png file we
have been using to represent him.

All we need to do is loop through them one at a time when the player is moving.

This is quite straightforward to implement. We will make a simple animation class
that handles the function of keeping time and returning the appropriate part of the
sprite sheet when requested. We can then initialize a new animation object for any
GameObject that needs to be animated. In addition, when they are being drawn
in the draw method of PlatformView, if the object is animated, we will handle it
slightly differently.

In this section, we will also see how to use the facing variable that tracks which way
the player is facing. It will enable us to reverse the sprite sheet depending on the way
the player (or any future animated objects) is headed.

Let's start by making the animation class. Create a new Java class and call it
Animation. The code that follows soon will declare variables that hold the bitmap to
be manipulated, the name of the bitmap, and a rect parameter to define the area of
the sprite sheet that is the coordinates of the currently relevant frame of animation.

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Bob, Beeps, and Bumps

[166]

In addition, we have frameCount, currentFrame, frameTicker, and framePeriod
that hold and control the number of available frames, the current frame number, and
the timing of the change of the frames. As you would expect, we also need to know
the width and height of a frame of animation, these are held by frameWidth and
frameHeight.

Furthermore, the Animation class will regularly refer to the number of pixels per
meter; therefore, it makes sense to hold this value in a member variable.

Enter these member variables that we discussed in the Animation class:

import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.Rect;

public class Animation {
 Bitmap bitmapSheet;
 String bitmapName;
 private Rect sourceRect;
 private int frameCount;
 private int currentFrame;
 private long frameTicker;
 private int framePeriod;
 private int frameWidth;
 private int frameHeight;
 int pixelsPerMetre;

Next, we have the constructor that prepares our animation object for use. We will
see exactly how we prepare for the actual animation soon. Note that there are a fair
few parameters in the signature indicating that the animation is quite configurable.
Just note that FPS in this context is not referring to the frame rate of the game but the
frame rate of the animation.

Animation(Context context,
 String bitmapName, float frameHeight,
 float frameWidth, int animFps,
 int frameCount, int pixelsPerMetre){

 this.currentFrame = 0;
 this.frameCount = frameCount;
 this.frameWidth = (int)frameWidth * pixelsPerMetre;
 this.frameHeight = (int)frameHeight * pixelsPerMetre;
 sourceRect = new Rect(0, 0, this.frameWidth,
 this.frameHeight);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[167]

 framePeriod = 1000 / animFps;
 frameTicker = 0l;
 this.bitmapName = "" + bitmapName;
 this.pixelsPerMetre = pixelsPerMetre;
}

We can deal with the real functionality of the class. The getCurrentFrame method
first checks to see if the object is moving or if it is capable of moving. At this stage,
this may seem a little odd as this method will only ever be called by a GameObject
class that is animated. The odd looking check, therefore, is determining if a new
frame is required at the moment.

If an object moves, (such as Bob), but is standing still, then we don't need to change
the frame of animation. However, if the animated object has no velocity ever, like a
roaring fire, then we need to animate it all the time. It will never have any velocity so
the moves variable will be false, but the method will proceed.

The method then uses time, frameTicker and framePeriod, to determine if it is
time to show the next frame of animation and if it increments the frame number to
display. Then, if the animation is on the last frame, it goes back to the first frame.

Finally, the precise left and right-hand positions that represent the portion of the
sprite sheet that contains the needed frame, are calculated and returned to the
calling code.

public Rect getCurrentFrame(long time,
 float xVelocity, boolean moves){

 if(xVelocity!=0 || moves == false) {
 // Only animate if the object is moving
 // or it is an object which doesn't move
 // but is still animated (like fire)

 if (time > frameTicker + framePeriod) {
 frameTicker = time;
 currentFrame++;
 if (currentFrame >= frameCount) {
 currentFrame = 0;
 }
 }
 }

 //update the left and right values of the source of
 //the next frame on the spritesheet
 this.sourceRect.left = currentFrame * frameWidth;

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Bob, Beeps, and Bumps

[168]

 this.sourceRect.right = this.sourceRect.left + frameWidth;

 return sourceRect;

}

}// End of Animation class

Next, we can add some members to the GameObject class.

// Most objects only have 1 frame
// And don't need to bother with these
private Animation anim = null;
private boolean animated;
private int animFps = 1;

Some methods to interact with our Animation class, which set and get variables,
make the animation work and inform the draw method if the object is animated
or not.

public void setAnimFps(int animFps) {
 this.animFps = animFps;
}

public void setAnimFrameCount(int animFrameCount) {
 this.animFrameCount = animFrameCount;
}

public boolean isAnimated() {
 return animated;
}

Lastly in GameObject, there is a method which the objects that require animating can
use to set up their whole animation object. Note it is this setAnimated method that
calls new() on a new animation object.

public void setAnimated(Context context, int pixelsPerMetre,
 boolean animated){

 this.animated = animated;
 this.anim = new Animation(context, bitmapName,
 height,
 width,
 animFps,
 animFrameCount,
 pixelsPerMetre);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[169]

The next method acts as a go between for the draw method of the PlatformView
class and the getRectToDraw method of the Animation class.

public Rect getRectToDraw(long deltaTime){
 return anim.getCurrentFrame(
 deltaTime,
 xVelocity,
 isMoves());
}

Then, we need to update the Player class in order to initialize its animation object
according to its own specific required number of frames and frames per second.
The new code in the Player class is highlighted:

setBitmapName("player");

final int ANIMATION_FPS = 16;
final int ANIMATION_FRAME_COUNT = 5;

// Set this object up to be animated
setAnimFps(ANIMATION_FPS);
setAnimFrameCount(ANIMATION_FRAME_COUNT);
setAnimated(context, pixelsPerMetre, true);

// X and y locations from constructor parameters
setWorldLocation(worldStartX, worldStartY, 0);

We can use all this new code from the draw method to implement our animations.
The next block of code checks if the current GameObject being drawn isAnimated().
If it is, it gets the appropriate rectangle from the sprite sheet using the
getNextRect() method via the GameObject class's getRectToDraw method.

Note that, the next code listing from the draw method that made the original call
to drawBitmap(), is now wrapped in an else clause at the end of the new code.
Basically, the logic is this. If animated, execute the new code, otherwise just do it the
usual way.

In addition to the animation code we know about, we also check if(go.
getFacing() == 1) and use the Matrix class to flip the bitmap when required by
scaling it by -1 on the x axis.

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Bob, Beeps, and Bumps

[170]

Here is all the new code, including the original drawBitmap() call wrapped in an
else clause at the end:

toScreen2d.set(vp.worldToScreen
 go.getWorldLocation().x,
 go.getWorldLocation().y,
 go.getWidth(),
 go.getHeight()));

if (go.isAnimated()) {
 // Get the next frame of the bitmap
 // Rotate if necessary
 if (go.getFacing() == 1) {
 // Rotate
 Matrix flipper = new Matrix();
 flipper.preScale(-1, 1);
 Rect r = go.getRectToDraw(System.currentTimeMillis());
 Bitmap b = Bitmap.createBitmap(
 lm.bitmapsArray[lm.getBitmapIndex(go.getType())],
 r.left,
 r.top,
 r.width(),
 r.height(),
 flipper,
 true);
 canvas.drawBitmap(b, toScreen2d.left, toScreen2d.top, paint);
} else {
 // draw it the regular way round
 canvas.drawBitmap(
 lm.bitmapsArray[lm.getBitmapIndex(go.getType())],
 go.getRectToDraw(System.currentTimeMillis()),
 toScreen2d, paint);
}
} else { // Just draw the whole bitmap
 canvas.drawBitmap(
 lm.bitmapsArray[lm.getBitmapIndex(go.getType())],
 toScreen2d.left,
 toScreen2d.top, paint);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[171]

Now, you can run the game and see Bob in all his animated glory. The screenshot
can't show his movements, but you can see he is now perfectly formed:

Summary
Our game is steadily coming together. At this stage, we can build a huge level design
in LevelCave and go running and jumping all over the place. However, we will save
to postpone trying to make the game playable until we have added a load more neat
features.

These neat features will include a machine gun, which can be upgraded through
collectible pickups and some enemies that Bob can shoot at. We will get going with
that in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[173]

Platformer – Guns, Life,
Money, and the Enemy

In this chapter, we will do many things. First, we will build a machine gun with a
variable rate of fire and have it shoot bullets. Then, we will introduce pickups or
collectibles. These give the player something to scavenge for while trying to escape
into the next level.

Then, just as Bob was beginning to think that his life was a blissful one of grass and
collectibles, we will build two adversaries for him to outsmart or kill. A homing
drone and a patrolling guard. We will easily be able to add all these things into our
level designs.

Ready aim fire
Now, we can give our hero a gun, and later, we can give him enemies to shoot at. We
will create a MachineGun class to do all the work and a Bullet class to represent the
projectiles that it fires. The Player class will control the MachineGun class, and the
MachineGun class will control and keep track of all the Bullet objects that it fires.

Create a new Java class and call it Bullet. Bullets are not complicated. Ours will
need a x and y location, a horizontal velocity, and a direction to help calculate the
velocity.

This implies the following simple class, constructor, and a bunch of getters and
setters:

public class Bullet {

 private float x;
 private float y;

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Guns, Life, Money, and the Enemy

[174]

 private float xVelocity;
 private int direction;

 Bullet(float x, float y, int speed, int direction){
 this.direction = direction;
 this.x = x;
 this.y = y;
 this.xVelocity = speed * direction;
 }

 public int getDirection(){
 return direction;
 }

 public void update(long fps, float gravity){
 x += xVelocity / fps;
 }

 public void hideBullet(){
 this.x = -100;
 this.xVelocity = 0;
 }

 public float getX(){
 return x;
 }

 public float getY(){
 return y;
 }

}

Now let's implement the MachineGun class.

Create a new Java class and call it MachineGun. First, we add some members. The
maxBullets variable is not the amount of shots a player has, that is unlimited, it is
the number of bullet objects the MachineGun class can have. Ten is sufficient for a
very fast firing gun, as we will see. The members numBullets and nextBullet help
the class to keep track of its 10 bullets. The rateOfFire variable controls how fast
the player will be able to tap the fire button, and lastShotTime will help enforce the
rateOfFire by keeping track of the system time that the last bullet was fired. It is the
rate of fire that will be the upgradeable aspect of the weapon.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[175]

Enter the code that we discussed as follows.

import java.util.concurrent.CopyOnWriteArrayList;

public class MachineGun extends GameObject{
 private int maxBullets = 10;
 private int numBullets;
 private int nextBullet;
 private int rateOfFire = 1;//bullets per second
 private long lastShotTime;

 private CopyOnWriteArrayList<Bullet> bullets;

 int speed = 25;

For functional purposes, we can think of the
CopyOnWriteArrayList bullets, which stores our bullets,
as a plain old ArrayList object. We use this more complex
and slightly slower class because it is thread safe and bullets
can be accessed potentially simultaneously from the UI thread,
when the player taps the fire button as well as from our own
thread. This article explains CopyOnWriteArrayList, if you
want to know more, visit:
http://examples.javacodegeeks.com/
java-basics/exceptions/java-util-
concurrentmodificationexception-how-to-handle-
concurrent-modification-exception/

We have the constructor that just initializes bullets, lastShotTime, and nextBullet:

MachineGun(){
 bullets = new CopyOnWriteArrayList<Bullet>();
 lastShotTime = -1;
 nextBullet = -1;
}

Here, we update all the Bullet objects controlled by the gun by calling the
bullet.update method for each bullet.

public void update(long fps, float gravity){
 //update all the bullets
 for(Bullet bullet: bullets){
 bullet.update(fps, gravity);
 }
 }

www.it-ebooks.info

http://examples.javacodegeeks.com/java-basics/exceptions/java-util-concurrentmodificationexception-how-to-handle-concurrent-modification-exception/
http://examples.javacodegeeks.com/java-basics/exceptions/java-util-concurrentmodificationexception-how-to-handle-concurrent-modification-exception/
http://examples.javacodegeeks.com/java-basics/exceptions/java-util-concurrentmodificationexception-how-to-handle-concurrent-modification-exception/
http://examples.javacodegeeks.com/java-basics/exceptions/java-util-concurrentmodificationexception-how-to-handle-concurrent-modification-exception/
http://www.it-ebooks.info/

Platformer – Guns, Life, Money, and the Enemy

[176]

Next, we have some getters that will let us find out things about our gun and its
bullets, to do things like collision detection, and drawing bullets.

public int getRateOfFire(){
 return rateOfFire;
}

public void setFireRate(int rate){
 rateOfFire = rate;
}

public int getNumBullets(){
 //tell the view how many bullets there are
 return numBullets;
}

public float getBulletX(int bulletIndex){
 if(bullets != null && bulletIndex < numBullets) {
 return bullets.get(bulletIndex).getX();
 }

 return -1f;
}

public float getBulletY(int bulletIndex){
 if(bullets != null) {
 return bullets.get(bulletIndex).getY();
 }
 return -1f;
}

We also have a quick helper method for when we want to stop drawing a bullet. We
hide it away until it is ready to be reassigned in our shoot method shortly.

public void hideBullet(int index){
 bullets.get(index).hideBullet();
}

A getter that returns the direction of travel:

public int getDirection(int index){
 return bullets.get(index).getDirection();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[177]

Now, we add a more comprehensive method that actually shoots a bullet. The
method compares the time of the last fired shot against the current rateOfFire.
It then proceeds to increment nextBullet and create a new Bullet object if
permitted. The bullet is sent speeding off in the same direction as Bob is facing.
Note that the method returns true if a bullet was successfully fired. This is so that
the InputController class can play a sound effect to correspond with the player's
button press.

public boolean shoot(float ownerX, float ownerY,
 int ownerFacing, float ownerHeight){

 boolean shotFired = false;
 if(System.currentTimeMillis() - lastShotTime >
 1000/rateOfFire){

 //spawn another bullet;
 nextBullet ++;

 if(numBullets >= maxBullets){
 numBullets = maxBullets;
 }

 if(nextBullet == maxBullets){
 nextBullet = 0;
 }

 lastShotTime = System.currentTimeMillis();
 bullets.add(nextBullet,
 new Bullet(ownerX,
 (ownerY+ ownerHeight/3), speed, ownerFacing));

 shotFired = true;
 numBullets++;
 }
 return shotFired;
}

Finally, we have a method to call when the player finds a machine gun upgrade
pickup. We will see more of them later in the chapter. Here, we simply increase
rateOfFire, which enables the player to tap the fire button more furiously and
still get results.

public void upgradeRateOfFire(){
 rateOfFire += 2;
}
}// End of MachineGun class

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Guns, Life, Money, and the Enemy

[178]

Now, we will modify the Player class to carry a MachineGun. Give Player a
member variable that is a MachineGun.

public MachineGun bfg;

Next in the Player constructor, add a line of code to initialize our new MachineGun
object:

bfg = new MachineGun();

In the Player class's update method, add a call to the MachineGun class's update
method just before we call move() for the player. As highlighted next:

bfg.update(fps, gravity);

// Let's go!
this.move(fps);

Add a method to the Player class, so our InputController can access the virtual
trigger. As we saw, the method returns true if a shot was successful so that the
InputController class knows whether to play a shot sound or not.

public boolean pullTrigger() {
 //Try and fire a shot
 return bfg.shoot(this.getWorldLocation().x,
 this.getWorldLocation().y,
 getFacing(), getHeight());
}

Now, we can make some minor additions to our InputController class so that the
player can fire a shot. The code to add is shown highlighted amongst the existing
code:

} else if (jump.contains(x, y)) {
 l.player.startJump(sound);

} else if (shoot.contains(x, y)) {
 if (l.player.pullTrigger()) {
 sound.playSound("shoot");
 }

} else if (pause.contains(x, y)) {
 l.switchPlayingStatus();

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[179]

Not forgetting the way that our new control system works, we also need to add
the same piece of extra code further down the InputController class in the
MotionEvent.ACTION_POINTER_DOWN case as well. As usual, here is the code
highlighted and with plenty of context:

} else if (jump.contains(x, y)) {
 l.player.startJump(sound);

} else if (shoot.contains(x, y)) {
 if (l.player.pullTrigger()) {
 sound.playSound("shoot");
}

} else if (pause.contains(x, y)) {
 l.switchPlayingStatus();
}

Now we have a gun, it's loaded, and we know how to pull the trigger. We just need
to draw the bullets.

Add the new code in the draw method, just before we draw the debugging text,
as shown:

//draw the bullets
paint.setColor(Color.argb(255, 255, 255, 255));
for (int i = 0; i < lm.player.bfg.getNumBullets(); i++) {
 // Pass in the x and y coords as usual
 // then .25 and .05 for the bullet width and height
 toScreen2d.set(vp.worldToScreen
 (lm.player.bfg.getBulletX(i),
 lm.player.bfg.getBulletY(i),
 .25f,
 .05f));

 canvas.drawRect(toScreen2d, paint);
}

// Text for debugging
if (debugging) {
// etc

We will now fire some bullets. Note that the rate of fire is unsatisfying and slow. We
will add some pickups, which the player can get to increase the rate of fire of his gun.

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Guns, Life, Money, and the Enemy

[180]

Pickups
Pickups are game objects that can be collected by the player. They include things like
upgrades, extra lives, money, and so on. We will now implement one of each of those
collectibles. As our game engine is setup the way it is, this will be surprisingly easy.

The first thing we will do is create a class to hold the state of the current player. We
want to monitor the money collected, power of machine gun, and lives remaining.
Let's call it PlayerState. Create a new Java class and name it PlayerState.

In addition to the variables, we have just talked about, we also want the
PlayerState class to remember an x and y location to respawn at, when the player
loses a life. Enter these member variables and the simple constructor:

import android.graphics.PointF;

public class PlayerState {

 private int numCredits;
 private int mgFireRate;
 private int lives;
 private float restartX;
 private float restartY;

 PlayerState() {
 lives = 3;
 mgFireRate = 1;
 numCredits = 0;
 }

Now, we need a method that we can call to initialize the respawn location. We
will use this later when we call this method. Also, we need a method to reload the
location. These are our next two methods for the PlayerState class:

public void saveLocation(PointF location) {
 // The location saves each time the player uses a teleport
 restartX = location.x;
 restartY = location.y;
}

public PointF loadLocation() {
 // Used every time the player loses a life
 return new PointF(restartX, restartY);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[181]

We just need a whole bunch of getters and setters to give us access to the members of
this class:

public int getLives(){
 return lives;
}

public int getFireRate(){
 return mgFireRate;
}

public void increaseFireRate(){
 mgFireRate += 2;
}

public void gotCredit(){
 numCredits ++;
}

public int getCredits(){
 return numCredits;
}

public void loseLife(){
 lives--;
}

public void addLife(){
 lives++;
}

public void resetLives(){
 lives = 3;
}
public void resetCredits(){
 lives = 0;
}

}// End PlayerState class

Next, declare an object of the PlayerState type as a member of the PlatformView
class:

// Our new engine classes
private LevelManager lm;
private Viewport vp;
InputController ic;
SoundManager sm;
private PlayerState ps;

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Guns, Life, Money, and the Enemy

[182]

Initialize it in the PlatformView constructor:

vp = new Viewport(screenWidth, screenHeight);
sm = new SoundManager();
sm.loadSound(context);
ps = new PlayerState();

loadLevel("LevelCave", 10, 2);

Now in the loadLevel method, create a RectF object, store the players starting
location, and pass it in to the PlayerState object, ps, for safe keeping. Each time the
player dies, he can be respawned using this location.

ic = new InputController(vp.getScreenWidth(),
vp.getScreenHeight());

PointF location = new PointF(px, py);
ps.saveLocation(location);

//set the players location as the world centre of the viewport

Now we will create three classes, one for each of our pickups. These classes are very
simple. They extend GameObject, set a bitmap, have a hitbox, and a location in the
world. Also note that they all receive a type in the constructor and use setType()
to store this value. We will soon see how to use their type to handle what happens
when the player "picks them up". Create three new Java classes: Coin, ExtraLife,
and MachineGunUpgrade. Note that the pickups are a little smaller than a platform,
perhaps as we may expect. Enter the code for each of them in turn.

The following is the code for Coin:

public class Coin extends GameObject{

 Coin(float worldStartX, float worldStartY, char type) {

 final float HEIGHT = .5f;
 final float WIDTH = .5f;

 setHeight(HEIGHT);
 setWidth(WIDTH);

 setType(type);

 // Choose a Bitmap
 setBitmapName("coin");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[183]

 // Where does the tile start
 // X and y locations from constructor parameters
 setWorldLocation(worldStartX, worldStartY, 0);
 setRectHitbox();
 }

 public void update(long fps, float gravity){}
}

Now, for ExtraLife:

public class ExtraLife extends GameObject{

 ExtraLife(float worldStartX, float worldStartY, char type) {

 final float HEIGHT = .8f;
 final float WIDTH = .65f;

 setHeight(HEIGHT);
 setWidth(WIDTH);

 setType(type);

 // Choose a Bitmap

 setBitmapName("life");

 // Where does the tile start
 // X and y locations from constructor parameters
 setWorldLocation(worldStartX, worldStartY, 0);
 setRectHitbox();
 }

 public void update(long fps, float gravity){}
}

Finally, the MachineGunUpgrade class:

public class MachineGunUpgrade extends GameObject{
 MachineGunUpgrade(float worldStartX,
 float worldStartY,
 char type) {

 final float HEIGHT = .5f;
 final float WIDTH = .5f;

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Guns, Life, Money, and the Enemy

[184]

 setHeight(HEIGHT);
 setWidth(WIDTH);

 setType(type);

 // Choose a Bitmap

 setBitmapName("clip");

 // Where does the tile start
 // X and y locations from constructor parameters
 setWorldLocation(worldStartX, worldStartY, 0);
 setRectHitbox();
 }

 public void update(long fps, float gravity){}
}

Now, update the LevelManager class to expect these three new objects in our
level designs and add them to ArrayList of GameObjects. To do this, we need to
update the LevelManager class in three places: getBitmap(), getBitmapIndex(),
and loadMapData(). Here are each of these minor updates, with the new code
highlighted amongst the existing code.

Make the following additions to getBitmap():

case 'p':
 index = 2;
 break;

case 'c':
 index = 3;
 break;

case 'u':
 index = 4;
 break;

case 'e':
 index = 5;
 break;

default:
 index = 0;
 break;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[185]

Make identical additions, but this time to getBitmapIndex():

case 'p':
 index = 2;
 break;

case 'c':
 index = 3;
 break;

case 'u':
 index = 4;
 break;

case 'e':
 index = 5;
 break;

default:
 index = 0;
 break;

Make the final changes within LevelManager with the following additions to
loadMapData():

case 'p':// a player
 // Add a player to the gameObjects
 gameObjects.add(new Player(context, px, py, pixelsPerMetre));
 // We want the index of the player
 playerIndex = currentIndex;
 // We want a reference to the player object
 player = (Player) gameObjects.get(playerIndex);
 break;

case 'c':
 // Add a coin to the gameObjects
 gameObjects.add(new Coin(j, i, c));
 break;

case 'u':
 // Add a machine gun upgrade to the gameObjects
 gameObjects.add(new MachineGunUpgrade(j, i, c));
 break;

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Guns, Life, Money, and the Enemy

[186]

case 'e':
 // Add an extra life to the gameObjects
 gameObjects.add(new ExtraLife(j, i, c));
 break;
}

Now, we can add the three appropriately named graphics to the drawable folder
and start adding them to our LevelCave design. Go ahead and copy clip.png,
coin.png, and life.png from the Chapter7/drawables folder in the download
bundle to the drawable folder of your Android Studio project.

Add a handy list of comments that identify all the types of game object. We will add
these over the course of this project and the alpha-numeric code that will represent
them on our level designs. Add the following comments to the LevelData class:

// Tile types
// . = no tile
// 1 = Grass
// 2 = Snow
// 3 = Brick
// 4 = Coal
// 5 = Concrete
// 6 = Scorched
// 7 = Stone

//Active objects
// g = guard
// d = drone
// t = teleport
// c = coin
// u = upgrade
// f = fire
// e = extra life

//Inactive objects
// w = tree
// x = tree2 (snowy)
// l = lampost
// r = stalactite
// s = stalacmite
// m = mine cart
// z = boulders

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[187]

Before we enhance our LevelCave class to use our new objects, we want to detect
when the player collects them or collides with them and take appropriate action.
We will first add a quick helper method to the Player class. The reason for this
is because when the player collides with another object, the default action in the
Player class's checkCollisions method is to stop the character moving. We don't
want this to happen for pickups because it will be irritating for the player. Therefore,
we will quickly add a restorePreviousVelocity method to the Player class that
we can call whenever we don't want this default action to occur. Add this method to
the Player class:

public void restorePreviousVelocity() {
 if (!isJumping && !isFalling) {
 if (getFacing() == LEFT) {
 isPressingLeft = true;
 setxVelocity(-MAX_X_VELOCITY);
 } else {
 isPressingRight = true;
 setxVelocity(MAX_X_VELOCITY);
 }
 }
}

Now, we can handle the collisions for each of our pickups in turn. Add these cases
to handle our three pickups within the switch block that handles our collisions in the
update method of the PlatformView class:

switch (go.getType()) {
 case 'c':
 sm.playSound("coin_pickup");
 go.setActive(false);
 go.setVisible(false);
 ps.gotCredit();

 // Now restore state that was
 // removed by collision detection
 if (hit != 2) {// Any hit except feet
 lm.player.restorePreviousVelocity();
 }
 break;

case 'u':
 sm.playSound("gun_upgrade");
 go.setActive(false);
 go.setVisible(false);
 lm.player.bfg.upgradeRateOfFire();
 ps.increaseFireRate();

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Guns, Life, Money, and the Enemy

[188]

 if (hit != 2) {// Any hit except feet
 lm.player.restorePreviousVelocity();
 }
 break;

case 'e':
 //extralife
 go.setActive(false);
 go.setVisible(false);
 sm.playSound("extra_life");
 ps.addLife();

 if (hit != 2) {
 lm.player.restorePreviousVelocity();
 }
 break;

default:// Probably a regular tile
 if (hit == 1) {// Left or right
 lm.player.setxVelocity(0);
 lm.player.setPressingRight(false);
 }

 if (hit == 2) {// Feet
 lm.player.isFalling = false;
 }
 break;
}

Finally, add the new objects to our LevelCave class.

The following code snippet, I suggest, is for a simple new layout
that demonstrates our new objects, but your layout can be as big
or elaborate as you like. We will do something more elaborate in
the next chapter when we design and link some levels.

Enter the following code into LevelCave or elaborate with your own design:

public class LevelCave extends LevelData{
 LevelCave() {
 tiles = new ArrayList<String>();
 this.tiles.add("p...");
 this.tiles.add("..");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[189]

 this.tiles.add("..");
 this.tiles.add("..");
 this.tiles.add("....................c.........................");
 this.tiles.add("....................1........u................");
 this.tiles.add(".................c..........u1................");
 this.tiles.add(".................1.........u1.................");
 this.tiles.add("..............c...........u1..................");
 this.tiles.add("..............1..........u1...................");
 this.tiles.add("......................e..1....e.....e.........");
 this.tiles.add("....11111111111111111111111111111111111111....");
}

This is what the simple layout will look like:

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Guns, Life, Money, and the Enemy

[190]

Try collecting the pickups, and you will hear the pleasing sound effects. In addition,
each time we collect a pickup, the PlayerState class stores an update. This will
be useful when we build a HUD in the next chapter. Most fun of all; if you collect
the machine gun upgrades, then try shooting your gun, you will find it much more
satisfying to wield.

We better make those bullets do something. However, before we do that, let's give
the player a bit more cannon fodder in the form of a couple of enemies.

The drone
The drone is a simple but evil enemy. It will detect the player when it is within the
viewport and fly straight at him. If the drone touches the player, death is immediate.

Let's build a Drone class. Create a new Java class and call it Drone. We need member
variables to remember when we set the last waypoint. This will restrict the frequency
with which the drone will get a navigation update of Bob's coordinates. This stops
the drone from being too deadly accurate. It needs a waypoint/target coordinate and
also needs to know the speed limit via MAX_X_VELOCITY and MAX_Y_VELOCITY.

import android.graphics.PointF;

public class Drone extends GameObject {

 long lastWaypointSetTime;
 PointF currentWaypoint;

 final float MAX_X_VELOCITY = 3;
 final float MAX_Y_VELOCITY = 3;

Now in the Drone constructor, initialize the usual GameObject members and
specifically, the Drone class ones such as currentWaypoint. Not forgetting, that if
we are going to shoot the drone, it will need a hitbox and we call setRectHitBox()
after we have called setWorldLocation().

Drone(float worldStartX, float worldStartY, char type) {
 final float HEIGHT = 1;
 final float WIDTH = 1;
 setHeight(HEIGHT); // 1 metre tall
 setWidth(WIDTH); // 1 metres wide

 setType(type);

 setBitmapName("drone");
 setMoves(true);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[191]

 setActive(true);
 setVisible(true);

 currentWaypoint = new PointF();

 // Where does the drone start
 // X and y locations from constructor parameters
 setWorldLocation(worldStartX, worldStartY, 0);
 setRectHitbox();
 setFacing(RIGHT);
}

Here is the implementation of the update method, which compares the drone's
coordinates with its currentWaypoint variable and changes its velocity accordingly.
Then, we end update() by calling move() then setRectHitbox().

public void update(long fps, float gravity) {
 if (currentWaypoint.x > getWorldLocation().x) {
 setxVelocity(MAX_X_VELOCITY);
 } else if (currentWaypoint.x < getWorldLocation().x) {
 setxVelocity(-MAX_X_VELOCITY);
 } else {
 setxVelocity(0);
 }

 if (currentWaypoint.y >= getWorldLocation().y) {
 setyVelocity(MAX_Y_VELOCITY);
 } else if (currentWaypoint.y < getWorldLocation().y) {
 setyVelocity(-MAX_Y_VELOCITY);
 } else {
 setyVelocity(0);
 }

 move(fps);

 // update the drone hitbox
 setRectHitbox();

}

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Guns, Life, Money, and the Enemy

[192]

In our last method for the Drone class, update the currentWaypoint variable by
passing in Bob's coordinates as a parameter. Note that we check if enough time has
elapsed for an update to make sure our drone is not too accurate.

public void setWaypoint(Vector2Point5D playerLocation) {
 if (System.currentTimeMillis() > lastWaypointSetTime + 2000)
 {//Has 2 seconds passed
 lastWaypointSetTime = System.currentTimeMillis();
 currentWaypoint.x = playerLocation.x;
 currentWaypoint.y = playerLocation.y;
 }
}
}// End Drone class

Add the drone graphic drone.png from Chapter7/drawable into the drawable
folder of your project.

We then need to add drones to our LevelManager class in the usual three
places, just as we did for each of our pickups. Now, add code to getBitmap(),
getBitmapIndex(), and loadMapData(). These are the three minor code additions
in order.

Add the highlighted code in the getBitmap method:

case 'e':
 index = 5;
 break;

case 'd':
 index = 6;
 break;

default:
 index = 0;
 break;

Add the highlighted code in the getBitmapIndex method:

case 'e':
 index = 5;
 break;

case 'd':
 index = 6;
 break;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[193]

default:
 index = 0;
 break;

Add the highlighted code in the loadMapData method:

case 'e':
 // Add an extra life to the gameObjects
 gameObjects.add(new ExtraLife(j, i, c));
 break;

case 'd':
 // Add a drone to the gameObjects
 gameObjects.add(new Drone(j, i, c));
 break;

The burning question is; how does the drone know where to go? In each frame,
if there is a drone within the viewport, we can send the coordinates of the player.
Do what is shown in this next code block within the update method of the
PlatformView class.

As usual, the new code is shown highlighted and in the context of the existing code.
If you remember the setWaypoint() code from the Drone class, it only accepts
updates every 2 seconds. This stops the drone from being too accurate.

if (lm.isPlaying()) {
 // Run any un-clipped updates
 go.update(fps, lm.gravity);

 if (go.getType() == 'd') {
 // Let any near by drones know where the player is
 Drone d = (Drone) go;
 d.setWaypoint(lm.player.getWorldLocation());
 }
}

Now, these evil drones can be strategically placed around the level, and they
will home in on the player. The last thing we need to do to make the drones fully
operational is to detect when they actually collide with the player. This is nice and
easy. Just add a case for drones in our collision detection switch block in the update
method of the PlatformView class:

case 'e':
 //extralife
 go.setActive(false);
 go.setVisible(false);

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Guns, Life, Money, and the Enemy

[194]

 sm.playSound("extra_life");
 ps.addLife();
 if (hit != 2) {// Any hit except feet
 lm.player.restorePreviousVelocity();
 }
 break;

case 'd':
 PointF location;
 //hit by drone
 sm.playSound("player_burn");
 ps.loseLife();
 location = new PointF(ps.loadLocation().x,
 ps.loadLocation().y);
 lm.player.setWorldLocationX(location.x);
 lm.player.setWorldLocationY(location.y);
 lm.player.setxVelocity(0);
 break;

default:// Probably a regular tile
 if (hit == 1) {// Left or right
 lm.player.setxVelocity(0);
 lm.player.setPressingRight(false);
 }

 if (hit == 2) {// Feet
 lm.player.isFalling = false;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[195]

Go ahead and add a whole bunch of drones to LevelCave and watch them fly at the
player. Note that if a drone catches the player, he dies and respawns.

Now, as if the world wasn't a dangerous enough place with all those enemy drones,
let's add another type of enemy.

The guard
The guard enemy will be an exercise in scripting. We will have our LevelManager
class automatically generate a simple script, which generates a route for our guard to
patrol.

The route will be the simplest one possible; it will be just two waypoints that the
guard will walk between continuously. It will be much quicker and simpler to
preprogram our guards with two predetermined waypoints. However, by taking
the time to have it automatically generated, we can place guards wherever we like
(within certain parameters) on any level we design, and the behavior will be taken
care of for us.

Our guard will be animated, so we will be using a sprite sheet and configuring the
animation details in the constructor; just as we did for the Player class.

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Guns, Life, Money, and the Enemy

[196]

Create a new class and call it Guard. First, handle the member variables. Our Guard
class will not only need two waypoints, but also a variable to indicate which one the
current waypoint is. Like other moving objects, it will need velocity. Here is the class
declaration and member variables to start coding your class:

import android.content.Context;

public class Guard extends GameObject {

 // Guards just move on x axis between 2 waypoints

 private float waypointX1;// always on left
 private float waypointX2;// always on right
 private int currentWaypoint;
 final float MAX_X_VELOCITY = 3;

We need to set up our guards via the constructor. First, setup our animation
variables, bitmap, and sizes. Then as usual, set the guard's position in the level, its
hitbox, and the way that it is facing. However, in the last line of the constructor we
set currentWaypoint to 1; this is new. We will see how this informs our guard's
behavior in this class's update method.

Guard(Context context, float worldStartX,
 float worldStartY, char type,
 int pixelsPerMetre) {

 final int ANIMATION_FPS = 8;
 final int ANIMATION_FRAME_COUNT = 5;
 final String BITMAP_NAME = "guard";
 final float HEIGHT = 2f;
 final float WIDTH = 1;

 setHeight(HEIGHT); // 2 metre tall
 setWidth(WIDTH); // 1 metres wide

 setType(type);

 setBitmapName("guard");
 // Now for the player's other attributes
 // Our game engine will use these
 setMoves(true);
 setActive(true);
 setVisible(true);

 // Set this object up to be animated

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[197]

 setAnimFps(ANIMATION_FPS);
 setAnimFrameCount(ANIMATION_FRAME_COUNT);
 setBitmapName(BITMAP_NAME);
 setAnimated(context, pixelsPerMetre, true);

 // Where does the tile start
 // X and y locations from constructor parameters
 setWorldLocation(worldStartX, worldStartY, 0);
 setxVelocity(-MAX_X_VELOCITY);
 currentWaypoint = 1;
}

Next, add a method that our LevelManager class will use to let the Guard class know
what its two waypoints are:

public void setWaypoints(float x1, float x2){
 waypointX1 = x1;
 waypointX2 = x2;
}

Now, we will code the "brains" of our Guard class, that is, its update method. You
can basically break this method into two main parts. First, if(currentWaypoint
== 1) and secondly, if(currentWaypoint == 2). Inside each of these if blocks,
simply check if the guard has reached or passed the appropriate waypoint. If it has,
switch waypoints, reverse the velocity, and make the guard face the other way.

Finally, call move() then setRectHitbox() to update the hitbox to the new location
of the guard. Add the code for the update method and then we will see how to put it
to work.

public void update(long fps, float gravity) {
 if(currentWaypoint == 1) {// Heading left
 if (getWorldLocation().x <= waypointX1) {
 // Arrived at waypoint 1
 currentWaypoint = 2;
 setxVelocity(MAX_X_VELOCITY);
 setFacing(RIGHT);
 }
 }

 if(currentWaypoint == 2){
 if (getWorldLocation().x >= waypointX2) {
 // Arrived at waypoint 2
 currentWaypoint = 1;

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Guns, Life, Money, and the Enemy

[198]

 setxVelocity(-MAX_X_VELOCITY);
 setFacing(LEFT);
 }
 }

 move(fps);
 // update the guards hitbox
 setRectHitbox();
}
}// End Guard class

Remember to add guard.png from the Chapter7/drawables folder of the download
bundle to the drawable folder of the project.

Now, we can make the usual three additions to the LevelManager class to load any
guards that may be found in our level designs.

In getBitmap(), add the highlighted code:

case 'd':
 index = 6;
 break;

case 'g':
 index = 7;
 break;

default:
 index = 0;
 break;

In getBitmapIndex(), add the highlighted code:

case 'd':
 index = 6;
 break;

case 'g':
 index = 7;
 break;

default:
 index = 0;
 break;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[199]

In loadMapData(), add the highlighted code:

case 'd':
 // Add a drone to the gameObjects
 gameObjects.add(new Drone(j, i, c));
 break;
case 'g':
 // Add a guard to the gameObjects
 gameObjects.add(new Guard(context, j, i, c, pixelsPerMetre));
 break;

We will soon add something totally new to LevelManager. That is a method that will
create the script (set two waypoints to patrol). For this new method to work, it needs
to know if the tile is suitable for walking on. We will add a new property, a getter,
and a setter to GameObject so that this is easily discoverable.

Add this new member to the GameObject class right after the class declaration:

private boolean traversable = false;

Add these two methods to the GameObject class to get and set this variable:

public void setTraversable(){
 traversable = true;
}

public boolean isTraversable(){
 return traversable;
}

Now in the Grass class constructor, add a call to setTraversable(). We must
remember to do this for all future GameObject derived classes that we design, if we
want our guards to be able to patrol on them. In Grass, add this line at the top of the
constructor:

setTraversable();

Next, we will look at the new setWaypoints method for our LevelManager class. It
needs to examine the level design and calculate two waypoints for any Guard objects
present in that level.

We will break this method into a few parts, so we can see what's happening at each
stage.

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Guns, Life, Money, and the Enemy

[200]

First, we need to loop through all the gameObjects classes looking for the Guard
objects.

public void setWaypoints() {
 // Loop through all game objects looking for Guards
 for (GameObject guard : this.gameObjects) {
 if (guard.getType() == 'g') {

If we reach this point in the code, it means we have found a guard who will need two
waypoints to be set. First, we need to find the tile which the guard is "standing on".
Then, we calculate the coordinate of the last traversable tile on either side, but with
a maximum range of five tiles each way. These will be the two waypoints. Here, is
the code to add to the setWaypoints method. It is heavily commented to make clear
what is going on without interrupting the flow by stopping to talk about it.

// Set waypoints for this guard
// find the tile beneath the guard
// this relies on the designer putting
// the guard in sensible location

int startTileIndex = -1;
int startGuardIndex = 0;
float waypointX1 = -1;
float waypointX2 = -1;

for (GameObject tile : this.gameObjects) {
 startTileIndex++;
 if (tile.getWorldLocation().y ==
 guard.getWorldLocation().y + 2) {

 // Tile is two spaces below current guard
 // Now see if has same x coordinate
 if (tile.getWorldLocation().x ==
 guard.getWorldLocation().x) {

 // Found the tile the guard is "standing" on
 // Now go left as far as possible
 // before non travers-able tile is found
 // Either on guards row or tile row
 // upto a maximum of 5 tiles.
 // 5 is an arbitrary value you can
 // change it to suit

 for (int i = 0; i < 5; i++) {// left for loop
 if (!gameObjects.get(startTileIndex -

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[201]

 i).isTraversable()) {

 //set the left waypoint
 waypointX1 = gameObjects.get(startTileIndex -
 (i + 1)).getWorldLocation().x;

 break;// Leave left for loop
 } else {
 // Set to max 5 tiles as
 // no non traversible tile found
 waypointX1 = gameObjects.get(startTileIndex -
 5).getWorldLocation().x;
 }
 }// end get left waypoint

 for (int i = 0; i < 5; i++) {// right for loop
 if (!gameObjects.get(startTileIndex +
 i).isTraversable()) {

 //set the right waypoint
 waypointX2 = gameObjects.get(startTileIndex +
 (i - 1)).getWorldLocation().x;

 break;// Leave right for loop
 } else {
 //set to max 5 tiles away
 waypointX2 = gameObjects.get(startTileIndex +
 5).getWorldLocation().x;
 }

 }// end get right waypoint

 Guard g = (Guard) guard;
 g.setWaypoints(waypointX1, waypointX2);
 }
}
}
}
}
}// End setWaypoints()

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Guns, Life, Money, and the Enemy

[202]

Now, we can call our new setWaypoints method as the last thing to do in the
LevelManager constructor. We need to call this method after the GameObject
class's ArrayList has been populated or there will be no guards in it. Add the
call to setWaypoints() as highlighted:

// Load all the GameObjects and Bitmaps
loadMapData(context, pixelsPerMetre, px, py);
// Set waypoints for our guards
setWaypoints();

Next, add this code to the collision detection switch block in the update method of
the PlatformView class, so we can bump into the guards.

case 'd':
 PointF location;
 //hit by drone
 sm.playSound("player_burn");
 ps.loseLife();
 location = new PointF(ps.loadLocation().x,
 ps.loadLocation().y);

 lm.player.setWorldLocationX(location.x);
 lm.player.setWorldLocationY(location.y);
 lm.player.setxVelocity(0);
 break;

case 'g':
 // Hit by guard
 sm.playSound("player_burn");
 ps.loseLife();
 location = new PointF(ps.loadLocation().x,
 ps.loadLocation().y);

 lm.player.setWorldLocationX(location.x);
 lm.player.setWorldLocationY(location.y);
 lm.player.setxVelocity(0);
 break;

default:// Probably a regular tile
 if (hit == 1) {// Left or right
 lm.player.setxVelocity(0);
 lm.player.setPressingRight(false);
 }
 if (hit == 2) {// Feet
 lm.player.isFalling = false;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[203]

Finally, add some g letters to the LevelCave class. Make sure to place them with one
space above the platform, because they are 2 meters high as in this pseudo code:

................g............................

...........................d.................
111

Summary
We implemented guns, pickups, drones, and guards. This means we now have plenty
of dangers, but have a machine gun that can't do any damage. We will change that
first thing in the next chapter, by implementing collision detection for our bullets.
However, we will go slightly further than merely having them hit our enemies.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[205]

Platformer – Putting It All
Together

Finally, we will make the bullets do some damage. The ricochet sound is very
satisfying when the bullets energy is absorbed by a clump of grass. We will add
an abundance of new platform types and inanimate scenery objects to make our
levels more interesting. We will provide a real sense of motion and immersion by
implementing multiple scrolling parallax backgrounds.

We will also add an animated fire tile for the player to avoid, and in addition, a
special Teleport class to link levels together into one playable game. Then, we will
use all of our game objects and backgrounds to create four, linked, and fully playable
levels.

Then, we will add a HUD to keep track of pickups and lives. Finally, we will discuss
some of the neat things that couldn't be fitted into this project in just four chapters.

Bullet collision detection
Detecting bullet collisions is fairly straightforward. We loop through all the existing
Bullet objects held by our MachineGun object. Next, we convert the points of each
bullet into a RectHitBox object and test it using intersects() against each object in
our viewport.

If we get a hit, we check to see what type of object it has hit. We then switch to
handle each type of object that we care about. If it is a Guard object, we knock it back
a bit, if it is a Drone object, we destroy it, and if it is anything else, we just make the
bullet disappear and play a kind of thudding/ricochet sound.

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Putting It All Together

[206]

We simply place this logic we discussed after our switch block that handles
collisions with the player, but before, we call update() on all our unclipped
objects as shown next:

default:// Probably a regular tile
 if (hit == 1) {// Left or right
 lm.player.setxVelocity(0);
 lm.player.setPressingRight(false);
 }

 if (hit == 2) {// Feet
 lm.player.isFalling = false;
 }
 break;
}
}

//Check bullet collisions
for (int i = 0; i < lm.player.bfg.getNumBullets(); i++) {
 //Make a hitbox out of the the current bullet
 RectHitbox r = new RectHitbox();
 r.setLeft(lm.player.bfg.getBulletX(i));
 r.setTop(lm.player.bfg.getBulletY(i));
 r.setRight(lm.player.bfg.getBulletX(i) + .1f);
 r.setBottom(lm.player.bfg.getBulletY(i) + .1f);

 if (go.getHitbox().intersects(r)) {
 // Collision detected
 // make bullet disappear until it
 // is respawned as a new bullet
 lm.player.bfg.hideBullet(i);

 //Now respond depending upon the type of object hit
 if (go.getType() != 'g' && go.getType() != 'd') {
 sm.playSound("ricochet");

 } else if (go.getType() == 'g') {
 // Knock the guard back
 go.setWorldLocationX(go.getWorldLocation().x +
 2 * (lm.player.bfg.getDirection(i)));

 sm.playSound("hit_guard");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[207]

 } else if (go.getType() == 'd') {
 //destroy the droid
 sm.playSound("explode");
 //permanently clip this drone
 go.setWorldLocation(-100, -100, 0);
 }
 }
}

if (lm.isPlaying()) {
 // Run any un-clipped updates
 go.update(fps, lm.gravity);
 //...

Try it out, it is really satisfying, especially with a high rate of fire.

Adding some fire tiles
These new GameObject derived objects will mean instant death to Bob. They won't
move, but they will be animated. We will see we can achieve this just by setting the
already existing properties of GameObject.

Adding this feature into our game is simple because we have already implemented
all the features we need. We already have a way to locate and add new tiles, a way to
detect and respond to a collision, sprite sheet animation, and so on. Let's do it step-by-
step, then we can add these dangerous and life-threatening elements into our world.

We can put the entire functionality of the class into its constructor. All we do is
configure the object much like we did our Grass object, but in addition, we configure
it with all the animation settings, like we did to the Player and Guard objects. The
fire.png sprite sheet has three frames of animation that we want to play over the
course of one second.

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Putting It All Together

[208]

Create a new class, call it Fire, and add the following code to it:

import android.content.Context;

public class Fire extends GameObject{

 Fire(Context context, float worldStartX,
 float worldStartY, char type, int pixelsPerMetre) {

 final int ANIMATION_FPS = 3;
 final int ANIMATION_FRAME_COUNT = 3;
 final String BITMAP_NAME = "fire";

 final float HEIGHT = 1;
 final float WIDTH = 1;

 setHeight(HEIGHT); // 1 metre tall
 setWidth(WIDTH); // 1 metre wide

 setType(type);
 // Now for the player's other attributes
 // Our game engine will use these
 setMoves(false);
 setActive(true);
 setVisible(true);

 // Choose a Bitmap
 setBitmapName(BITMAP_NAME);
 // Set this object up to be animated
 setAnimFps(ANIMATION_FPS);
 setAnimFrameCount(ANIMATION_FRAME_COUNT);
 setBitmapName(BITMAP_NAME);
 setAnimated(context, pixelsPerMetre, true);

 // Where does the tile start
 // X and y locations from constructor parameters
 setWorldLocation(worldStartX, worldStartY, 0);
 setRectHitbox();
 }

 public void update(long fps, float gravity) {
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[209]

Now, of course, we need to add the fire.png sprite sheet from Chapter8/drawable
in the download bundle to the drawable folder of the project.

Then, we add to our LevelManager class, in the usual three ways that we have done
for all our new GameObject derived classes.

In the getBitmap method, add the highlighted code:

case 'g':
 index = 7;
 break;

case 'f':
 index = 8;
 break;

default:
 index = 0;
 break;

In the getBitmapIndex method:

case 'g':
 index = 7;
 break;

case 'f':
 index = 8;
 break;

default:
 index = 0;
 break;

In the loadMapData() method:

case 'g':
 // Add a guard to the gameObjects
 gameObjects.add(new Guard(context, j, i, c, pixelsPerMetre));
 break;

 case 'f':
 // Add a fire tile the gameObjects
 gameObjects.add(new Fire
 (context, j, i, c, pixelsPerMetre));

 break;

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Putting It All Together

[210]

Finally, we add to our collision detection switch block to handle the consequences of
touching this terrible tile.

case 'g':
 //hit by guard
 sm.playSound("player_burn");
 ps.loseLife();
 location = new PointF(ps.loadLocation().x,
 ps.loadLocation().y);
 lm.player.setWorldLocationX(location.x);
 lm.player.setWorldLocationY(location.y);
 lm.player.setxVelocity(0);
 break;

case 'f':
 sm.playSound("player_burn");
 ps.loseLife();
 location = new PointF(ps.loadLocation().x,
 ps.loadLocation().y);
 lm.player.setWorldLocationX(location.x);
 lm.player.setWorldLocationY(location.y);
 lm.player.setxVelocity(0);
 break;

default:// Probably a regular tile
 if (hit == 1) {// Left or right
 lm.player.setxVelocity(0);
 lm.player.setPressingRight(false);
 }

 if (hit == 2) {// Feet
 lm.player.isFalling = false;
 }
 break;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[211]

Why not add a few f tiles to LevelCave and experiment with what the player is able
to jump over. It will help us design some challenging levels later in the chapter.

We don't want our player to be walking on the grass the whole time, so let's add
some more variety.

Eye candy
The next three sections in this chapter will be purely aesthetic. We will add a whole
bunch of different tile graphics with matching classes so that we can use a whole lot
more artistic license to make our levels more interesting. The difference between the
tiles will be purely visual, but it will be fairly simple to make them more functional
than that.

For example, we can easily detect collision with a snow tile and have the player keep
moving briefly after stopping to simulate skidding, or perhaps; the concrete tile can
allow the player to move faster and therefore change the way we design big jumps
and so on. The point is that you don't have to just copy paste the classes as they will
be presented here.

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Putting It All Together

[212]

We will also add some completely aesthetic props: mine carts, boulders, stalactites,
and more. There will be no collision detection for these objects. They will allow the
level designer to make the levels more visually interesting.

It would be simple to make these aesthetics more functional. Just add
a hitbox and a case in the collision detection switch block to handle
the consequences.

Probably, the most visually significant improvement we add, will be scrolling
backgrounds. We will add some classes to allow the level designer to add multiple
different scrolling backgrounds to a level design.

Why not add all the graphics from the Chapter8/drawable folder
of the download bundle to the drawable folder of your project.
Then, you will have all the graphics ready and in place, for this and
the next two sections as well.

The new platform tiles
Now, add all these classes with the filenames as shown. I have removed all
comments from the code because they are all functionally the same as the Grass
class. Create each of the following classes with the name shown and enter the code:

Here is the code for the Brick class:

public class Brick extends GameObject {

 Brick(float worldStartX, float worldStartY, char type) {
 setTraversable();
 final float HEIGHT = 1;
 final float WIDTH = 1;
 setHeight(HEIGHT);
 setWidth(WIDTH);
 setType(type);
 setBitmapName("brick");
 setWorldLocation(worldStartX, worldStartY, 0);
 setRectHitbox();
 }

 public void update(long fps, float gravity) {
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[213]

This is the code for the Coal class:

public class Coal extends GameObject {

 Coal(float worldStartX, float worldStartY, char type) {
 setTraversable();
 final float HEIGHT = 1;
 final float WIDTH = 1;
 setHeight(HEIGHT);
 setWidth(WIDTH);
 setType(type);
 setBitmapName("coal");
 setWorldLocation(worldStartX, worldStartY, 0);
 setRectHitbox();
 }

 public void update(long fps, float gravity) {
 }
}

Here is the code for the Concrete class:

public class Concrete extends GameObject {

 Concrete(float worldStartX, float worldStartY, char type) {
 setTraversable();
 final float HEIGHT = 1;
 final float WIDTH = 1;
 setHeight(HEIGHT);
 setWidth(WIDTH);
 setType(type);
 setBitmapName("concrete");
 setWorldLocation(worldStartX, worldStartY, 0);
 setRectHitbox();
 }

 public void update(long fps, float gravity) {
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Putting It All Together

[214]

The following is the code for the Scorched class:

public class Scorched extends GameObject {

 Scorched(float worldStartX, float worldStartY, char type) {
 setTraversable();
 final float HEIGHT = 1;
 final float WIDTH = 1;
 setHeight(HEIGHT);
 setWidth(WIDTH);
 setType(type);
 setBitmapName("scorched");
 setWorldLocation(worldStartX, worldStartY, 0);
 setRectHitbox();
 }

 public void update(long fps, float gravity) {
 }
}

This is the code for the Snow class:

public class Snow extends GameObject {

 Snow(float worldStartX, float worldStartY, char type) {
 setTraversable();
 final float HEIGHT = 1;
 final float WIDTH = 1;
 setHeight(HEIGHT);
 setWidth(WIDTH);
 setType(type);
 setBitmapName("snow");
 setWorldLocation(worldStartX, worldStartY, 0);
 setRectHitbox();
 }

 public void update(long fps, float gravity) {
 }
}

Here is the code for the Stone class:

public class Stone extends GameObject {

 Stone(float worldStartX, float worldStartY, char type) {
 setTraversable();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[215]

 final float HEIGHT = 1;
 final float WIDTH = 1;
 setHeight(HEIGHT);
 setWidth(WIDTH);
 setType(type);
 setBitmapName("stone");
 setWorldLocation(worldStartX, worldStartY, 0);
 setRectHitbox();
 }

 public void update(long fps, float gravity) {
 }
}

Now, as we are getting used to, we need to add them all into our LevelManager in
the usual three places.

In getBitmap(), we simply add them in as normal. Note that although the values
are arbitrary, we will use numbers for the type 2,3,4, and so on. This makes it easy
to remember, while designing levels, that all our actual platforms are numbers.
The actual index numbers are unimportant to us, as long as they are the same as
in the getBitmapIndex method. Also, remember that we have a list of types in
our LevelData class's comments, for easy reference when designing levels.

case 'f':
 index = 8;
 break;

case '2':
 index = 9;
 break;

case '3':
 index = 10;
 break;

case '4':
 index = 11;
 break;

case '5':
 index = 12;
 break;

case '6':

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Putting It All Together

[216]

 index = 13;
 break;

case '7':
 index = 14;
 break;

default:
 index = 0;
 break;

In getBitmapIndex(), we do the same thing:

case 'f':
 index = 8;
 break;

case '2':
 index = 9;
 break;

case '3':
 index = 10;
 break;

case '4':
 index = 11;
 break;

case '5':
 index = 12;
 break;

case '6':
 index = 13;
 break;

case '7':
 index = 14;
 break;

default:
 index = 0;
 break;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[217]

In loadMapData(), we just call new() on our new GameObjects to add them to our
gameObjects list.

case 'f':
 // Add a fire tile the gameObjects
 gameObjects.add(new Fire(context, j, i, c, pixelsPerMetre));
 break;

case '2':
 // Add a tile to the gameObjects
 gameObjects.add(new Snow(j, i, c));
 break;

case '3':
 // Add a tile to the gameObjects
 gameObjects.add(new Brick(j, i, c));
 break;

case '4':
 // Add a tile to the gameObjects
 gameObjects.add(new Coal(j, i, c));
 break;

case '5':
 // Add a tile to the gameObjects
 gameObjects.add(new Concrete(j, i, c));
 break;

case '6':
 // Add a tile to the gameObjects
 gameObjects.add(new Scorched(j, i, c));
 break;

case '7':
 // Add a tile to the gameObjects
 gameObjects.add(new Stone(j, i, c));
 break;

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Putting It All Together

[218]

Now, go wild adding different terrains to the LevelCave class:

Now, to add some scenery objects.

The new scenery objects
Here, we will add some objects that don't do anything but look pretty. We will let
the game engine know by simply not adding a hitbox and setting them randomly to
either z layer -1, or 1. Then the player can appear either in front or behind them.

We will first add all the classes, and then update LevelManager in the usual three
places. Create each of the new classes as follows:

Here is the Boulders class:

public class Boulders extends GameObject {

 Boulders(float worldStartX, float worldStartY, char type) {

 final float HEIGHT = 1;
 final float WIDTH = 3;

 setHeight(HEIGHT); // 1 metre tall
 setWidth(WIDTH); // 1 metre wide

 setType(type);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[219]

 // Choose a Bitmap
 setBitmapName("boulder");
 setActive(false);//don't check for collisions etc

 // Randomly set the tree either just in front or just
 //behind the player -1 or 1
 Random rand = new Random();
 if(rand.nextInt(2)==0) {
 setWorldLocation(worldStartX, worldStartY, -1);
 }else{
 setWorldLocation(worldStartX, worldStartY, 1);//
 }
 //No hitbox!!

 }

 public void update(long fps, float gravity) {
 }
}

From now on, I removed all the comments to save digital ink. The class functionality
is the same as it is in Boulders, just the attributes vary a bit.

Here is the Cart class:

public class Cart extends GameObject {

 Cart(float worldStartX, float worldStartY, char type) {

 final float HEIGHT = 2;
 final float WIDTH = 3;
 setWidth(WIDTH);
 setHeight(HEIGHT);
 setType(type);
 setBitmapName("cart");
 setActive(false);
 Random rand = new Random();
 if(rand.nextInt(2)==0) {
 setWorldLocation(worldStartX, worldStartY, -1);
 }else{
 setWorldLocation(worldStartX, worldStartY, 1);
 }
 }

 public void update(long fps, float gravity) {
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Putting It All Together

[220]

This is the code for the Lampost class:

public class Lampost extends GameObject {

 Lampost(float worldStartX, float worldStartY, char type) {

 final float HEIGHT = 3;
 final float WIDTH = 1;
 setHeight(HEIGHT);
 setWidth(WIDTH);
 setType(type);
 setBitmapName("lampost");
 setActive(false);
 Random rand = new Random();
 if(rand.nextInt(2)==0) {
 setWorldLocation(worldStartX, worldStartY, -1);
 }else{
 setWorldLocation(worldStartX, worldStartY, 1);
 }
 }

 public void update(long fps, float gravity) {
 }
}

Here is the Stalagmite class:

import java.util.Random;

public class Stalagmite extends GameObject {

 Stalagmite(float worldStartX, float worldStartY, char type) {

 final float HEIGHT = 3;
 final float WIDTH = 2;
 setHeight(HEIGHT);
 setWidth(WIDTH);
 setType(type);
 setBitmapName("stalacmite");
 setActive(false);
 Random rand = new Random();
 if(rand.nextInt(2)==0) {
 setWorldLocation(worldStartX, worldStartY, -1);
 }else{
 setWorldLocation(worldStartX, worldStartY, 1);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[221]

 }
 }

 public void update(long fps, float gravity) {
 }
}

This is the Stalactite class:

import java.util.Random;

public class Stalactite extends GameObject {

 Stalactite(float worldStartX, float worldStartY, char type) {

 final float HEIGHT = 3;
 final float WIDTH = 2;
 setHeight(HEIGHT);
 setWidth(WIDTH);
 setType(type);
 setBitmapName("stalactite");
 setActive(false);
 Random rand = new Random();
 if(rand.nextInt(2)==0) {
 setWorldLocation(worldStartX, worldStartY, -1);
 }else{
 setWorldLocation(worldStartX, worldStartY, 1);
 }
 }

 public void update(long fps, float gravity) {
 }
}

Here is the Tree class:

import java.util.Random;

public class Tree extends GameObject {

 Tree(float worldStartX, float worldStartY, char type) {

 final float HEIGHT = 4;
 final float WIDTH = 2;
 setWidth(WIDTH);

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Putting It All Together

[222]

 setHeight(HEIGHT);
 setType(type);
 setBitmapName("tree1");
 setActive(false);
 Random rand = new Random();
 if(rand.nextInt(2)==0) {
 setWorldLocation(worldStartX, worldStartY, -1);
 }else{
 setWorldLocation(worldStartX, worldStartY, 1);
 }
 }

 public void update(long fps, float gravity) {
 }
}

And this is the Tree2 class:

import java.util.Random;

public class Tree2 extends GameObject {

 Tree2(float worldStartX, float worldStartY, char type) {

 final float HEIGHT = 4;
 final float WIDTH = 2;
 setWidth(WIDTH);
 setHeight(HEIGHT);
 setType(type);
 setBitmapName("tree2");
 setActive(false);
 Random rand = new Random();
 if(rand.nextInt(2)==0) {
 setWorldLocation(worldStartX, worldStartY, -1);
 }else{
 setWorldLocation(worldStartX, worldStartY, 1);
 }
 }

 public void update(long fps, float gravity) {
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[223]

That's all the new classes for the scenery objects. Now, we can update the getBitmap
method with the seven new types in the LevelManager class.

case '7':
 index = 14;
 break;

case 'w':
 index = 15;
 break;

case 'x':
 index = 16;
 break;

case 'l':
 index = 17;
 break;

case 'r':
 index = 18;
 break;

case 's':
 index = 19;
 break;

case 'm':
 index = 20;
 break;

case 'z':
 index = 21;
 break;

default:
 index = 0;
 break;

Update the getBitmapIndex method in the same way:

case '7':
 index = 14;
 break;

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Putting It All Together

[224]

case 'w':
 index = 15;
 break;

case 'x':
 index = 16;
 break;

case 'l':
 index = 17;
 break;

case 'r':
 index = 18;
 break;

case 's':
 index = 19;
 break;

case 'm':
 index = 20;
 break;

case 'z':
 index = 21;
 break;

default:
 index = 0;
 break;

Finally, make sure our new scenery items are added to our gameObjects array list:

case '7':
 // Add a tile to the gameObjects
 gameObjects.add(new Stone(j, i, c));
 break;

case 'w':
 // Add a tree to the gameObjects
 gameObjects.add(new Tree(j, i, c));
 break;

case 'x':
 // Add a tree2 to the gameObjects
 gameObjects.add(new Tree2(j, i, c));
 break;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[225]

case 'l':
 // Add a tree to the gameObjects
 gameObjects.add(new Lampost(j, i, c));
 break;

case 'r':
 // Add a stalactite to the gameObjects
 gameObjects.add(new Stalactite(j, i, c));
 break;

case 's':
 // Add a stalagmite to the gameObjects
 gameObjects.add(new Stalagmite(j, i, c));
 break;

case 'm':
 // Add a cart to the gameObjects
 gameObjects.add(new Cart(j, i, c));
 break;

case 'z':
 // Add a boulders to the gameObjects
 gameObjects.add(new Boulders(j, i, c));
 break;

Now, we can design levels with scenery. Note the slight difference in appearance
when an object is drawn on layer zero compared to layer one and how the player
character passes either in front or behind:

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Putting It All Together

[226]

Of course, if you want to bump into lamposts, get skewered
by stalagmites, or jump on top of mine carts, then just give
them a hitbox.

We have one more way to beautify our game world.

Scrolling parallax backgrounds
Parallax backgrounds are scrolling backgrounds, where we scroll them slower the
farther away they are. So, if we have a grass verge at the player's feet, we will scroll
it quickly. However, if we have a mountain range in the distance, we will scroll it
slowly. This effect can give the sense of motion to the player.

To implement them, we will first add a data structure to represent the parameters
of a background. We will call this class BackgroundData, we will then implement a
Background class, which has the functionality necessary to control the scrolling and
then we will see how to position and define backgrounds in our level design. Finally,
we will write a drawBackground method that we will call from our regular draw
method.

Make sure you added all the graphics from the Chapter8/drawable folder of the
download bundle to the drawable folder of your project.

First, let's build a simple class to hold the data structure which will define our
backgrounds. As we can see in the next block of code, we have quite a large
number of parameters and member variables. We will need to know which bitmap
will represent a background, which layer on the z axis to draw it (in front on 1 or
behind on -1), where in the world on the y axis it starts and finishes, how fast the
background will scroll, and how high the background will be.

The isParallax Boolean is intended to give the option to have a background which
is static, but we will not be implementing this feature. When you see the code for the
background class, you will see it is simple to add this functionality if you want to.

Create a new class and call it BackgroundData, then implement it with the following
code:

public class BackgroundData {
 String bitmapName;
 boolean isParallax;
 //layer 0 is the map
 int layer;
 float startY;
 float endY;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[227]

 float speed;
 int height;
 int width;

 BackgroundData(String bitmap, boolean isParallax,
 int layer, float startY, float endY,
 float speed, int height){

 this.bitmapName = bitmap;
 this.isParallax = isParallax;
 this.layer = layer;
 this.startY = startY;
 this.endY = endY;
 this.speed = speed;
 this.height = height;
 }
}

Now, we add an ArrayList of our new type to the LevelData class:

ArrayList<String> tiles;
ArrayList<BackgroundData> backgroundDataList;

// This class will evolve along with the project

Next, let's create the Background class itself. Create a new class and name it
Background. First, we set up a bunch of variables to hold a copy of the background
image along with a reversed copy. We will make the backgrounds seem endless
by putting the images back to back alternating between the regular image and a
reversed image. We will see how to achieve this further on in the code.

We also have variables for the width and height of the image in pixels. The
reversedFirst Boolean will determine which copy of the image is currently drawn
on the left-hand side of the screen (first) and will change as the player moves and
the image scrolls. The xClip variable will hold the precise pixel of the x axis (of the
image), where we will cut the image and start to draw it from the left hand edge of
the screen.

The y, endY, z, and speed member variables are to hold the related values passed in
as parameters:

import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.Matrix;

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Putting It All Together

[228]

public class Background {

 Bitmap bitmap;
 Bitmap bitmapReversed;

 int width;
 int height;

 boolean reversedFirst;
 int xClip;// controls where we clip the bitmaps each frame
 float y;
 float endY;
 int z;

 float speed;
 boolean isParallax;//Not currently used

Now, in the constructor, we create an Android resource ID from the name of the
graphic file passed in as a parameter. Then, create the actual bitmap by calling
BitmapFactory.decodeResource(). We set reversedFirst to false, so we will
start with the regular (non-reversed) copy of the image on the left-hand side of the
screen. We initialize our member variables and then scale the bitmap we just created
by calling Bitmap.createScaledBitmap() and passing in bitmap, the width of
the screen and the height (in the game world) of our background multiplied by the
pixelsPerMetre, making the bitmap exactly the right size for the current devices
screen.

Note that we must choose appropriate heights for our background
designs or they will appear stretched.

The last thing we do in the constructor is create a Matrix object and send it to the
createScaledBitmap method along with the bitmap, so we now have a reversed
copy of our background image stored in the bitmapReversed Bitmap object.

 Background(Context context, int yPixelsPerMetre,
 int screenWidth, BackgroundData data){

 int resID = context.getResources().getIdentifier
 (data.bitmapName, "drawable",
 context.getPackageName());

 bitmap = BitmapFactory.decodeResource
 (context.getResources(), resID);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[229]

 // Which version of background (reversed or regular) is
 // currently drawn first (on left)
 reversedFirst = false;

 //Initialize animation variables.
 xClip = 0; //always start at zero
 y = data.startY;
 endY = data.endY;
 z = data.layer;
 isParallax = data.isParallax;
 speed = data.speed; //Scrolling background speed

 //Scale background to fit the screen.
 bitmap = Bitmap.createScaledBitmap(bitmap, screenWidth,
 data.height * yPixelsPerMetre
 , true);

 width = bitmap.getWidth();
 height = bitmap.getHeight();

 // Create a mirror image of the background
 Matrix matrix = new Matrix();
 matrix.setScale(-1, 1); //Horizontal mirror effect.
 bitmapReversed = Bitmap.createBitmap(
 bitmap, 0, 0, width, height, matrix, true);

 }
}

Now, we add two backgrounds to our level design. We fill out the required
parameters that we have already discussed. Note that the "grass" background on
layer 1 scrolls much faster than the "skyline" background on layer -1. This will
create the desired parallax effect. Add this code right at the end of the LevelCave
constructor:

backgroundDataList = new ArrayList<BackgroundData>();
// note that speeds less than 2 cause problems
this.backgroundDataList.add(
 new BackgroundData("skyline", true, -1, 3, 18, 10, 15));

this.backgroundDataList.add(
 new BackgroundData("grass", true, 1, 20, 24, 24, 4));

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Putting It All Together

[230]

It is certainly true that most caves do not have grass and a skyline.
This is just a demonstration and to get the code working. We will
redesign LevelCave and design some more appropriate levels a
little later in this chapter.

Now, we load them with our LevelManager class by declaring a new Arraylist
object as a member of our LevelManager class.

LevelData levelData;
ArrayList<GameObject> gameObjects;
ArrayList<Background> backgrounds;

Then, add a new method in LevelManager to load the background data:

private void loadBackgrounds(Context context,
 int pixelsPerMetre, int screenWidth) {

 backgrounds = new ArrayList<Background>();
 //load the background data into the Background objects and
 // place them in our GameObject arraylist
 for (BackgroundData bgData : levelData.backgroundDataList) {
 backgrounds.add(new Background(context,
 pixelsPerMetre, screenWidth, bgData));
 }
}

We call the new method in the LevelManager constructor:

// Load all the GameObjects and Bitmaps
loadMapData(context, pixelsPerMetre, px, py);
loadBackgrounds(context, pixelsPerMetre, screenWidth);

And, not for the last time, we will upgrade our Viewport class to enable our
PlatformView methods to get the information they need, to draw the parallax
backgrounds.

public int getPixelsPerMetreY(){
 return pixelsPerMetreY;
}

public int getyCentre(){
 return screenCentreY;
}

public float getViewportWorldCentreY(){
 return currentViewportWorldCentre.y;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[231]

Then, we will add a method which actually does the drawing in the PlatformView
class. We will call this method from onDraw(), in just the right places, next. Note that
we are using the new methods that we just added to the Viewport class.

First, we define four Rect objects that we will use to hold the start and end points of
bitmap and reversedBitmap.

Implement the first part of the drawBackground method as shown:

private void drawBackground(int start, int stop) {

 Rect fromRect1 = new Rect();
 Rect toRect1 = new Rect();
 Rect fromRect2 = new Rect();
 Rect toRect2 = new Rect();

Now, we simply loop through all our backgrounds using the start and stop
parameters to decide which backgrounds have a z layer that we are currently
interested in drawing.

 for (Background bg : lm.backgrounds) {
 if (bg.z < start && bg.z > stop) {

Next, we send the world coordinates of the background to the Viewport class
for clipping. If it isn't clipped (and should be drawn), we get the starting pixel
coordinates, and ending pixel coordinates on the y axis with the help of the new
methods we added to our Viewport class previously. Note that we cast the results to
int variables ready to be drawn to the screen.

 // Is this layer in the viewport?
 // Clip anything off-screen
 if (!vp.clipObjects(-1, bg.y, 1000, bg.height)) {
 float floatstartY = ((vp.getyCentre() -
 ((vp.getViewportWorldCentreY() - bg.y) *
 vp.getPixelsPerMetreY())));

 int startY = (int) floatstartY;

 float floatendY = ((vp.getyCentre() -
 ((vp.getViewportWorldCentreY() - bg.endY) *
 vp.getPixelsPerMetreY())));

 int endY = (int) floatendY;

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Putting It All Together

[232]

This next block of code is where the real action takes place. We initialize the four
Rect objects with the starting and ending coordinates of the first and second of our
two Bitmap objects. Note that the point (or pixel) that is calculated, is determined
by xClip, which is initially zero. So, to start with, we will simply see background (if
it is not clipped) stretched across the width of the screen. Soon, we will see that we
modify xClip based on Bob's velocity and cause different regions from each bitmap
to be shown:

 // Define what portion of bitmaps to capture
 // and what coordinates to draw them at
 fromRect1 = new Rect(0, 0, bg.width - bg.xClip,
 bg.height);

 toRect1 = new Rect(bg.xClip, startY, bg.width, endY);
 fromRect2 = new Rect(bg.width - bg.xClip, 0,
 bg.width, bg.height);

 toRect2 = new Rect(0, startY, bg.xClip, endY);
 }// End if (!vp.clipObjects...

Now, we determine which background (regular or reversed) is currently being
drawn first, and then draw that one first followed by the other.

 //draw backgrounds
 if (!bg.reversedFirst) {

 canvas.drawBitmap(bg.bitmap,
 fromRect1, toRect1, paint);
 canvas.drawBitmap(bg.bitmapReversed,
 fromRect2, toRect2, paint);

 } else {
 canvas.drawBitmap(bg.bitmap,
 fromRect2, toRect2, paint);

 canvas.drawBitmap(bg.bitmapReversed,
 fromRect1, toRect1, paint);
 }

We can scroll along based on the speed and direction of Bob, lv.player.
getxVelocity() and if xClip has reached the end of the current first background,
if (bg.xClip >= bg.width), simply set xClip to zero and change which bitmap
we show first.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[233]

 // Calculate the next value for the background's
 // clipping position by modifying xClip
 // and switching which background is drawn first,
 // if necessary.
 bg.xClip -= lm.player.getxVelocity() / (20 / bg.speed);
 if (bg.xClip >= bg.width) {
 bg.xClip = 0;
 bg.reversedFirst = !bg.reversedFirst;
 }
 else if (bg.xClip <= 0) {
 bg.xClip = bg.width;
 bg.reversedFirst = !bg.reversedFirst;

 }
 }
 }
}

Then, we add a call to drawBackground() just before our game objects for
backgrounds with a z layer less than zero.

// Rub out the last frame with arbitrary color
paint.setColor(Color.argb(255, 0, 0, 255));
canvas.drawColor(Color.argb(255, 0, 0, 255));

// Draw parallax backgrounds from -1 to -3
drawBackground(0, -3);

// Draw all the GameObjects
Rect toScreen2d = new Rect();

Just after the bullets are drawn, but before the debugging text for those backgrounds
with a z order more than zero.

// Draw parallax backgrounds from layer 1 to 3
drawBackground(4, 0);

// Text for debugging

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Putting It All Together

[234]

Now, we can really start to get creative with our level designs.

Very soon, we will make some real playable levels that use all the features we have
implemented over the last four chapters. Before we do that, let's have a bit of fun
with the Viewport class.

It will be really useful for the player to scan around a level and plan a route. Equally,
it will be helpful when designing levels, to zoom around the level to see how a
particular part of the level looks without having to get the player character to that
part in order to see it on the screen. So, let's make the pause screen into a moveable
viewport.

Pause menu with moveable viewport
This is nice and quick. We will just add a bunch of new methods to our Viewport
class to change the center of focus. Then, we will call them from InputController.

If you remember when we implemented the InputController class back in
Chapter 6, Platformer – Bob, Beeps and Bumps, we wrapped all the control logic in an
if(playing) test. We also implemented the pause button already in the else clause.
All we will do is use the left, right, jump, and shoot buttons as left, right, up, and
down, respectively, for moving the viewport.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[235]

First, add these methods to the Viewport class:

public void moveViewportRight(int maxWidth){
 if(currentViewportWorldCentre.x < maxWidth -
 (metresToShowX/2)+3) {

 currentViewportWorldCentre.x += 1;
 }
}

public void moveViewportLeft(){
 if(currentViewportWorldCentre.x > (metresToShowX/2)-3){
 currentViewportWorldCentre.x -= 1;
 }
}

public void moveViewportUp(){
 if(currentViewportWorldCentre.y > (metresToShowY /2)-3) {
 currentViewportWorldCentre.y -= 1;
 }
}

public void moveViewportDown(int maxHeight){
 if(currentViewportWorldCentre.y <
 maxHeight - (metresToShowY / 2)+3) {

 currentViewportWorldCentre.y += 1;
 }
}

Now, add these calls to the methods from the else clause of the if condition in the
InputController class that we were just discussing.

//Move the viewport around to explore the map
switch (motionEvent.getAction() & MotionEvent.ACTION_MASK) {
 case MotionEvent.ACTION_DOWN:
 if (right.contains(x, y)) {
 vp.moveViewportRight(l.mapWidth);
 } else if (left.contains(x, y)) {
 vp.moveViewportLeft();
 } else if (jump.contains(x, y)) {
 vp.moveViewportUp();
 } else if (shoot.contains(x, y)) {
 vp.moveViewportDown(l.mapHeight);
 } else if (pause.contains(x, y)) {

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Putting It All Together

[236]

 l.switchPlayingStatus();
 }
 break;
}

On the pause screen, the player can look around and plan their route when they are
on more complicated levels. They are probably going to need to.

Levels and game rules
We have implemented so many features, but we still don't have a way to put them
altogether into a playable game. We need to be able to travel between levels, and
have the player state persist when we do.

Traveling between levels
As we are going to design four levels, we want the player to be able to travel
between them. First, let's add code to the switch statement at the start of the
LevelManager constructor to include all four levels that we are about to build:

switch (level) {
 case "LevelCave":
 levelData = new LevelCave();
 break;

// We can add extra levels here
case "LevelCity":
 levelData = new LevelCity();
 break;

case "LevelForest":
 levelData = new LevelForest();
 break;

case "LevelMountain":
 levelData = new LevelMountain();
 break;
}

As we know, we start the game by calling loadLevel() from the PlatformView
constructor. The arguments include the name of the level and the coordinates
to spawn the player. If you are designing your own levels, then you need to
decide which level and coordinates to start with. If you will be following along
with the levels I have provided, set the call to loadLevel() in the constructor of
PlatformView as follows:

loadLevel("LevelCave", 1, 16);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[237]

In the if(lm.isPlaying()) block, in the update method, where we set the viewport
to center on the player each frame; add the following code to detect (and brutally
kill) the player if he falls out of the map as well as cause the game to restart with
three lives, zero money, and no upgrades should he run out of lives:

if (lm.isPlaying()) {
 // Reset the players location as
 // the world centre of the viewport
 //if game is playing
 vp.setWorldCentre(lm.gameObjects.get(lm.playerIndex)
 .getWorldLocation().x,
 lm.gameObjects.get(lm.playerIndex)
 .getWorldLocation().y);

 //Has player fallen out of the map?
 if (lm.player.getWorldLocation().x < 0 ||
 lm.player.getWorldLocation().x > lm.mapWidth ||
 lm.player.getWorldLocation().y > lm.mapHeight) {

 sm.playSound("player_burn");
 ps.loseLife();
 PointF location = new PointF(ps.loadLocation().x,
 ps.loadLocation().y);

 lm.player.setWorldLocationX(location.x);
 lm.player.setWorldLocationY(location.y);
 lm.player.setxVelocity(0);
 }

 // Check if game is over
 if (ps.getLives() == 0) {
 ps = new PlayerState();
 loadLevel("LevelCave", 1, 16);
 }
}

Now, we can create a special GameObject class that when touched sends the player
to a predetermined level and location. We can then strategically add these objects
to our level designs, and they will act as the link between our levels. Create a new
class and call it Teleport. If you haven't already done so, add the door.png file
from Chapter8/drawable to the drawable folder of the project.

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Putting It All Together

[238]

This is how our Teleport object will appear in the game:

Let's make a simple class to hold the data that each Teleport object will need. Create
a new class called Location like this:

public class Location {
 String level;
 float x;
 float y;

 Location(String level, float x, float y){
 this.level = level;
 this.x = x;
 this.y = y;
 }
}

The actual Teleport class looks just like any other GameObject class, but note that it
also has a member Location variable. We will see how the level design will hold the
destination of the Teleport, the LevelManager class will initialize it, and then when
the player collides with it, we can load the new location, sending the player off to his
destination.

public class Teleport extends GameObject {

 Location target;

 Teleport(float worldStartX, float worldStartY,
 char type, Location target) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[239]

 final float HEIGHT = 2;
 final float WIDTH = 2;
 setHeight(HEIGHT); // 2 metres tall
 setWidth(WIDTH); // 1 metre wide
 setType(type);
 setBitmapName("door");

 this.target = new Location(target.level,
 target.x, target.y);

 // Where does the tile start
 // X and y locations from constructor parameters
 setWorldLocation(worldStartX, worldStartY, 0);

 setRectHitbox();
 }

 public Location getTarget(){
 return target;
 }

 public void update(long fps, float gravity){
 }
}

To make our Teleport class work in a way that lets the level designer decide what it
will do exactly, we need to add to our LevelData class like this:

ArrayList<String> tiles;
ArrayList<BackgroundData> backgroundDataList;
ArrayList<Location> locations;

// This class will evolve along with the project

Then, we need to add a t to the level design wherever we want our teleport/door,
and an entry like the next line of code, within the constructor of the class of the level
we are designing.

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Putting It All Together

[240]

Note that you can have as many Teleport objects as you like in a map, as long as the
order they are defined in code matches the order they appear in the design. We will
see exactly how this works when we look at our actual level designs in a minute, but
the code will look like this:

// Declare the values for the teleports in order of appearance
locations = new ArrayList<Location>();
this.locations.add(new Location("LevelCity", 118f, 18f));

As usual, we need to update the LevelManager class to load and locate our
teleport(s). Here is the new code for getBitmap():

case 'z':
 index = 21;
 break;

case 't':
 index = 22;
 break;

default:
 index = 0;
 break;

New code for getBitmapIndex():

case 'z':
 index = 21;
 break;

case 't':
 index = 22;
 break;

default:
 index = 0;
 break;

We also need to keep track of our Teleport objects during the loading phase in case
there is more than one. So, add a new local variable as shown in the loadMapData
method:

//Keep track of where we load our game objects
int currentIndex = -1;
int teleportIndex = -1;
// how wide and high is the map? Viewport needs to know

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[241]

Finally for the LevelManager class, we initialize all the teleport data from the level
design, tuck it away in the object and add it to our gameObject ArrayList.

case 'z':
 // Add a boulders to the gameObjects
 gameObjects.add(new Boulders(j, i, c));
 break;

 case 't':
 // Add a teleport to the gameObjects
 teleportIndex++;
 gameObjects.add(new Teleport(j, i, c,
 levelData.locations.get(teleportIndex)));

 break;

We are really close to being able to teleport all over the place. We need to detect a
collision with a teleport, and then load a new level with the player at the desired
location. This code will go in our collision detection switch block in the PlatformView
class like this:

case 'f':
 sm.playSound("player_burn");
 ps.loseLife();
 location = new PointF(ps.loadLocation().x,
 ps.loadLocation().y);
 lm.player.setWorldLocationX(location.x);
 lm.player.setWorldLocationY(location.y);
 lm.player.setxVelocity(0);
 break;

case 't':
 Teleport teleport = (Teleport) go;
 Location t = teleport.getTarget();
 loadLevel(t.level, t.x, t.y);
 sm.playSound("teleport");
 break;

default:// Probably a regular tile
 if (hit == 1) {// Left or right
 lm.player.setxVelocity(0);
 lm.player.setPressingRight(false);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Putting It All Together

[242]

 if (hit == 2) {// Feet
 lm.player.isFalling = false;
 }
 break;

When a new level is loaded, the Player, MachineGun, and Bullet objects are all
created from scratch. Therefore, we need to add a line to our loadLevel method
to reload the current machine gun fire rate from the PlayerState class into the
MachineGun class. Add the highlighted code:

ps.saveLocation(location);

// Reload the players current fire rate from the player state
lm.player.bfg.setFireRate(ps.getFireRate());

Now, we can work on the level designs for real.

The level designs
You can just copy and paste four classes from the Chapter8/java folder into your
project and start playing, or you can start from the beginning and design your own.
The levels are quite large, intricate, and tough to beat. It is not physically possible to
print the level designs in a book or e-book in any meaningful way, so you will need
to open up the LevelCave, LevelCity, LevelForest, and LevelMountain design
files in order to see the detail of the four levels.

However, a brief discussion of the levels, pictures, and some screenshots, but not
actual code from the four designs follows.

Note that the following screenshots feature the new HUD that is
the last thing we will cover in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[243]

The cave
The cave level is where the whole thing starts. It not only features modestly
frustrating jumps, but also plenty of fire making a fall potentially deadly.

As the player starts with a puny machine gun, only a few drones are present in the
level. But there are two awkward guards that will require vaulting.

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Putting It All Together

[244]

The city
The city holds vast rewards, especially in the bottom left-hand corner for coins and
the top-left for machine gun upgrades.

However, there is a very awkward-to-jump guard on the bottom level should the
player want to get all those stray coins and not opt for leaving them behind. The near
vertical ascent that must be traversed up the left-hand side is likely to frustrate and
if the player opts not to go for the machine gun upgrades, he will probably struggle
with the double-guard just outside the door to the next level.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[245]

The forest
The forest may be the overall toughest level of them all with a brutally long run of
jumps, which are very easy to over or under jump.

And with in excess of a dozen drones waiting to swoop on Bob, as his pixels hang
precariously off a platform.

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Putting It All Together

[246]

The mountains
The fresh mountain air means Bob has almost made it. Not a guard or a drone in
sight.

However, look at that winding path of jumps, most of which will see Bob thrown
right back to the bottom if he puts a pixel out of place.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[247]

If you want to try out each of the levels without completing the
grueling level(s) that precede it, you can of course, just start at the
level and location of your choice. To do this, just change the call
to loadLevel() in the PlatformView constructor to one of the
following:

loadLevel("LevelMountain", 118, 17);

loadLevel("LevelForest", 1, 17);

loadLevel("LevelCity", 118, 18);

loadLevel("LevelCave", 1, 16);

The HUD
The finishing touch is to add a HUD. This code in the draw method of PlatformView
uses the graphics from some of the existing game objects.

Add the code after the last call to drawBackground() and before the debugging text
is drawn:

// Draw the HUD
// This code needs bitmaps: extra life, upgrade and coin
// Therefore there must be at least one of each in the level

int topSpace = vp.getPixelsPerMetreY() / 4;
int iconSize = vp.getPixelsPerMetreX();
int padding = vp.getPixelsPerMetreX() / 5;
int centring = vp.getPixelsPerMetreY() / 6;
paint.setTextSize(vp.getPixelsPerMetreY()/2);
paint.setTextAlign(Paint.Align.CENTER);

paint.setColor(Color.argb(100, 0, 0, 0));
canvas.drawRect(0,0,iconSize * 7.0f, topSpace*2 + iconSize,paint);
paint.setColor(Color.argb(255, 255, 255, 0));

canvas.drawBitmap(lm.getBitmap('e'), 0, topSpace, paint);
canvas.drawText("" + ps.getLives(), (iconSize * 1) + padding,
 (iconSize) - centring, paint);

canvas.drawBitmap(lm.getBitmap('c'), (iconSize * 2.5f) + padding,
 topSpace, paint);

www.it-ebooks.info

http://www.it-ebooks.info/

Platformer – Putting It All Together

[248]

canvas.drawText("" + ps.getCredits(), (iconSize * 3.5f) + padding
 * 2, (iconSize) - centring, paint);

canvas.drawBitmap(lm.getBitmap('u'), (iconSize * 5.0f) + padding,
 topSpace, paint);

canvas.drawText("" + ps.getFireRate(), (iconSize * 6.0f) + padding
 * 2, (iconSize) - centring, paint);

I think we are done!

Summary
We finished the platform game because that is all there is space for. Why not try to
implement some or all of the following improvements and features?

Change the code in the Player class to make Bob gradually accelerate and decelerate
instead of always running at full speed. Simply increment the velocity for each frame
that the player is holding down left or right, and decrement it for each frame they are
not.

Once you have achieved this, add the preceding code to the collision detection
switch block in the update method to make the player skid on snow, speed up on
concrete, and have a different walking/landing sound effect for each tile type.

Draw a gun on Bob, and adjust the height that the Bullet object is spawned at to
appear as if it is coming from the barrel of his machine gun.

Make some objects pushable. Add an isPushable member to GameObject and make
the collision detection simply knock the object back a little. Perhaps, Bob could push
mine carts into fire to jump over extra wide fire pits. Note that pushing objects that
fall down to another level will be more complicated than pushing objects that remain
at the same y coordinate.

Destructible tiles sound like fun. Give them a strength variable that decrements
when hit by a bullet and is removed from gameObjects when it reaches zero.

Moving platforms are a staple of great platformers. Simply add waypoints to a tile
object and add the move code to the update method. The challenge will be assigning
the waypoints. You can either have them all move a set number of spaces left and
right or up and down, or do some kind of setTileWaypoint method similar to how
we scripted the Guard object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[249]

Make the game more persistent by saving the total number of coins collected ever,
remembering which levels are unlocked, and offering access to replay any unlocked
levels from the menu screen.

Make the game easier with teleports used as waypoints. Adjust the viewport zoom
for different screen sizes. The current zoom can be a little too low for some small
phones.

Add timed runs for high scores, leaderboards, and achievements, and add more
levels.

In the next chapter, we will look at a much smaller project, but still an interesting
one, as we will be using OpenGL ES for super-fast, smooth drawing.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[251]

Asteroids at 60 FPS with
OpenGL ES 2

Welcome to the final project. Over the course of the next three chapters, we will build
an Asteroids-like game using the OpenGL ES 2 graphics API. If you are wondering
exactly what OpenGL ES 2 is, then we will discuss the details later in this chapter.

We will build a very simple but fun and challenging game, where we can draw and
animate hundreds of objects at a time, even on quite old Android devices.

With OpenGL, we will take our drawing efficiency to a much higher level, and with
some not-too-tricky math, our movement and collision detection will be greatly
enhanced compared to our previous projects.

By the end of this chapter, we will have a basic working OpenGL ES 2 engine drawing
our simple but temporarily static spaceship to the screen; at 60 FPS or higher.

If you have never seen or played the '80s arcade hit (released in November
1979) Asteroids, why not go and check out a clone of it or a video now?
Free web game at http://www.freeasteroids.org/.
On YouTube at https://www.youtube.com/
watch?v=WYSupJ5r2zo.

Let's discuss exactly what we intend to build.

www.it-ebooks.info

http://www.freeasteroids.org/
https://www.youtube.com/watch?v=WYSupJ5r2zo
https://www.youtube.com/watch?v=WYSupJ5r2zo
http://www.it-ebooks.info/

Asteroids at 60 FPS with OpenGL ES 2

[252]

Asteroids simulator
Our game will be set in a four directional scrolling world that the player will be able
to traverse while hunting for asteroids. The world will be enclosed in a rectangular
border to keep the asteroids from drifting off too far, and the border will also serve
as another hazard for the player to avoid.

The game controls
We will reuse our InputController class with a few simple modifications and can
even keep the same button layout. As we will see, however, we will draw the buttons
on screen in a very different manner to our retro platformer. Also, instead of walking
left and right, the player will rotate the ship left and right through 360 degrees. The
jump button will become a thrust toggle switch to turn on and off forward motion,
and the shoot button will remain just that. We will also have the pause button in the
same place.

Rules for the game
When an asteroid hits the border, it will bounce back into the game world. If the player
hits the border, a life will be lost and the ship will respawn in the center of the screen.
If an asteroid hits the ship this will be fatal too.

The player will start with three lives and must clear the asteroids simulator of all
asteroids. The HUD will show a tally of the remaining asteroids and lives. If the player
clears all the asteroids, then the next wave will start with more than the last. They will
also move a little faster. Each wave cleared will be rewarded with an extra life.

We will implement these rules as we proceed through the project.

Introducing OpenGL ES 2
OpenGL ES 2 is the second major version of the Open Graphics Library (OpenGL) for
embedded systems. It is the mobile incarnation of OpenGL for desktop systems.

Why use it and how does it work?
OpenGL runs as a native process, not on the Dalvik virtual machine like the rest of
our Java. This is one of the reasons it is super fast. The OpenGL ES API takes away
all of the complexity of interacting with native code, and OpenGL itself also provides
very efficient and fast algorithms within its native code base.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[253]

The first version of OpenGL was completed in 1992. The point is that even back then
OpenGL used arguably the most efficient code and algorithms to draw graphics.
Now, more than 20 years on, it has been continually refined and improved as well as
adapted to work with the latest graphics hardware, both mobile and desktop. All the
mobile GPU manufacturers specifically design their hardware to be compatible with
the latest version of OpenGL ES.

Trying to improve on OpenGL ES is, therefore, probably a fool's errand.

There is another viable Graphics API option when developing
exclusively for Windows devices called DirectX.

What is neat about Version 2?
The first version of OpenGL ES certainly impressed at the time. I remember almost
falling off my chair when I first played a 3D shooter on a phone! Now this is of
course commonplace. However, compared to the desktop version of OpenGL,
OpenGL ES 1 had a major drawback.

OpenGL ES 1 had, what is known as, a fixed function pipeline. The geometry
to draw went into the GPU and it was drawn, but any further manipulation of
individual pixels needed to take place before OpenGL ES took over the drawing of a
frame of the game.

Now, with OpenGL ES 2, we have access to what is called a programmable pipeline.
That is, we can send our graphics off to be drawn, but we can also write code that
runs on the GPU that is capable of manipulating each and every pixel independently.
This is a very powerful feature, although we will not get to explore it in much depth.

This extra code that runs on the GPU is called a shader program. We can write code
to manipulate the geometry (position) of our graphics in what is called a vertex
shader. We can also write code that manipulates the appearance of each and every
pixel individually called a fragment shader.

Actually, we can do better than even pixel manipulation. A fragment is
not necessarily a pixel. It depends on the hardware and the specific nature
of the graphics being processed. It can be more than one pixel or a sub-
pixel: one light of several that makes up a pixel in the screen hardware.

www.it-ebooks.info

http://www.it-ebooks.info/

Asteroids at 60 FPS with OpenGL ES 2

[254]

The disadvantage of OpenGL ES 2 for simple games like this is that you must
provide at least one vertex and one fragment shader, even if you are not going to do
a whole lot with them. As we will see, however, this is not very difficult. Although
we will not be exploring shaders in any depth, we will write some shader code using
GL Shader Language (GLSL) and get a glimpse at the possibilities they offer.

If the power of programmable graphics pipelines and shaders is just too
exciting to leave for another day, then I can highly recommend GLSL
Essentials by Jacobo Rodríguez.
https://www.packtpub.com/hardware-and-creative/glsl-
essentials

The book explores OpenGL shaders on the desktop and is highly
accessible to any reader with basic programming knowledge and a
willingness to learn a different language (GLSL), yet one with some
syntax similarities to Java.

How will we be using OpenGL ES 2?

How we will use OpenGL ES 2?
In OpenGL, everything is a point, a line, or a triangle. In addition, we can attach
colors and textures to this basic geometry and also combine these elements to make
the complex graphics that we see in today's modern mobile games.

We will use some of each type of element (points, lines, and triangles) that are
collectively referred to as primitives.

We will not be using textures on this project. Fortunately, the appearance of
untextured primitives is appropriate for building our Asteroids-like game.

In addition to primitives, Open GL uses matrices. Matrices are a method and
structure for performing arithmetic. This arithmetic can range from extremely
simple high-school level calculations to move (translate) a coordinate or it can be
quite complex to perform more advanced mathematics to convert our game world
coordinates into OpenGL screen coordinates that the GPU can use.

The point is that both the matrices and methods to use them are entirely provided
by the OpenGL API. This means that we just have to learn what methods do which
graphical manipulation and do not have to concern ourselves with the potentially
complex math that goes on behind the scenes (on the GPU).

The best way to learn about shaders, primitives, and matrices in OpenGL is to go
ahead and start using them.

www.it-ebooks.info

https://www.packtpub.com/hardware-and-creative/glsl-essentials
https://www.packtpub.com/hardware-and-creative/glsl-essentials
http://www.it-ebooks.info/

Chapter 9

[255]

Preparing OpenGL ES 2
First we start off with our Activity class, which as before is the entry point into our
game. Create a new project and in the Application Name field enter C9 Asteroids.
Choose Phones and tablets, then Blank Activity when prompted. In the Activity
Name field type AsteroidsActivity.

Obviously you don't have to follow my exact naming choices but just
remember to make the minor alterations in code to reflect your own
naming choices.

You can delete activity_asteroids.xml from the layout folder. You can
also delete all the code within the AsteroidsActivity.java file. Just leave the
package declaration.

Locking the layout to landscape
Just as we did for the previous two projects, we will make sure the game runs in
landscape mode only. We will make our AndroidManifest.xml file, force our
AsteroidsActivity class to run with a full screen, and lock it to a landscape
orientation. Let's make these changes:

1. Open the manifests folder now and double-click the AndroidManifest.xml
file to open it in the code editor.

2. In the AndroidManifest.xml file, find the following line of code:
android:name=".AsteroidsActivity"

3. Immediately, type or copy and paste these two lines to make
PlatformActivity run in full screen and lock it in the landscape orientation:

android:theme="@android:style/Theme.NoTitleBar.Fullscreen"
android:screenOrientation="landscape"

Now we can move on to implementing our Asteroids simulator game with OpenGL.

Activity
First of all, we have our familiar Activity class. The only thing that is new here
is the type of our view class. We declare a member called asteroidsView of type
GLSurfaceView. This is the class that will provide us with easy access to OpenGL.
We will see exactly how very soon. Note that all we do is initialize GLSurfaceView
by passing in the Activity context and the screen resolution that we obtain in the
usual manner. Implement the AsteroidsActivity class as shown:

www.it-ebooks.info

http://www.it-ebooks.info/

Asteroids at 60 FPS with OpenGL ES 2

[256]

package com.gamecodeschool.c9asteroids;

import android.app.Activity;
import android.graphics.Point;
import android.opengl.GLSurfaceView;
import android.os.Bundle;
import android.view.Display;

public class AsteroidsActivity extends Activity {

 private GLSurfaceView asteroidsView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Get a Display object to access screen details
 Display display = getWindowManager().getDefaultDisplay();

 // Load the resolution into a Point object
 Point resolution = new Point();
 display.getSize(resolution);

 asteroidsView = new AsteroidsView
 (this, resolution.x, resolution.y);

 setContentView(asteroidsView);
 }

 @Override
 protected void onPause() {
 super.onPause();

 asteroidsView.onPause();

 }

 @Override
 protected void onResume() {
 super.onResume();

 asteroidsView.onResume();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[257]

 }
}

Next, we will get to see some OpenGL code.

The view
Here, we will implement the GLSurfaceView class. Actually, this isn't where the
real action will take place but it does allow us to attach an OpenGL renderer. This is
a class that implements the Renderer interface. As well as in this critical Renderer,
the GLSurfaceView class enables us to override the onTouchListener method that
will allow us to detect player input in the same way that SurfaceView did in the
previous projects.

Android Studio does not auto-import or even suggest all of the OpenGL
imports required. Therefore, I included all of the imports for some classes
in the code listings. In addition, you will note that sometimes we use
static imports. This will make the code more readable too.

In the code that follows, we declare and initialize a new object of type GameManager
that we will implement soon. We set the OpenGL version to two by calling
setEGLContextClientVersion(2), and we set our vital renderer object by calling
setRenderer() and passing in our GameManager object. Create a new class called
AsteroidsView and implement it as follows:

import android.content.Context;
import android.opengl.GLSurfaceView;

public class AsteroidsView extends GLSurfaceView{

 GameManager gm;

 public AsteroidsView(Context context, int screenX, int
 screenY) {
 super(context);

 gm = new GameManager(screenX, screenY);

 // Which version of OpenGl we are using
 setEGLContextClientVersion(2);

 // Attach our renderer to the GLSurfaceView
 setRenderer(new AsteroidsRenderer(gm));

www.it-ebooks.info

http://www.it-ebooks.info/

Asteroids at 60 FPS with OpenGL ES 2

[258]

 }

}

Now, we can take a look at what is involved in our GameManager class.

A class to manage our game
This class will control things like the level the player is on, the number of lives, as
well as things like the overall size of the game world. It will evolve a little as the
project progresses, but it will remain quite simple in comparison to the combined
depth of the LevelManager and PlayerState classes from the previous project,
although it effectively replaces both.

In the code that follows, we declare int members to hold the width and height of the
game world; we can make this much bigger or smaller as we see fit. We keep track of
the games status with the Boolean playing.

The GameManager class also needs to know the height and width of the screen
in pixels, and this information is passed in to the constructor when the object is
initialized back in the AsteroidsView class.

Note also the metresToShowX and metresToShowY member variables. These probably
sound familiar from our Viewport class from the last project. These variables will be
used for exactly the same thing: defining the current viewable area of the game world.
This time, however, OpenGL will take care of what objects to clip before drawing
(using a matrix). We will soon see where this happens.

Note that although OpenGL takes care of clipping and scaling the area of
the game world that we want to show, it doesn't have any effect on which
objects are updated each frame. As we will see, however, this is just
what we want for this game because we want all our objects to update
themselves each frame, even when they are offscreen. Therefore, no
Viewport class is necessary for this game.

Lastly, we want a convenient way to pause and unpause the game, and we provide
this functionality with the switchPlayingStatus method. Create a new class called
GameManager and implement it as shown:

public class GameManager {

 int mapWidth = 600;
 int mapHeight = 600;
 private boolean playing = false;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[259]

 // Our first game object
 SpaceShip ship;

 int screenWidth;
 int screenHeight;

 // How many metres of our virtual world
 // we will show on screen at any time.
 int metresToShowX = 390;
 int metresToShowY = 220;

 public GameManager(int x, int y){

 screenWidth = x;
 screenHeight = y;

 }

 public void switchPlayingStatus() {
 playing = !playing;

 }

 public boolean isPlaying(){
 return playing;
 }
}

We can now take our first look at these all powerful shaders and how we will
manage them.

Managing simple shaders
An application can have many shaders. We can then attach different shaders to
different game objects to create the desired effects.

We will only have one vertex and one fragment shader in this game. However, when
you see how to attach a shader to primitives, it will be plain that it is simple to have
more shaders.

1. First of all, we need the code for the shader that will be executed in the GPU.
2. Then we need to compile that code.
3. Finally, we need to link together the two compiled shaders into a GL program.

www.it-ebooks.info

http://www.it-ebooks.info/

Asteroids at 60 FPS with OpenGL ES 2

[260]

As we implement this next simple class, we will see how we can bundle up this
functionality into a single method call, which can be made by an object from our game
and have the ready-to-run GL program returned to the game object. When we build
our GameObject class later in the chapter, we will see how we use this GL program.

Let's go ahead and implement the necessary three steps in a new class. Create a new
class and call it GLManager. Add the static imports as shown here:

import static android.opengl.GLES20.GL_FRAGMENT_SHADER;
import static android.opengl.GLES20.GL_VERTEX_SHADER;
import static android.opengl.GLES20.glAttachShader;
import static android.opengl.GLES20.glCompileShader;
import static android.opengl.GLES20.glCreateProgram;
import static android.opengl.GLES20.glCreateShader;
import static android.opengl.GLES20.glLinkProgram;
import static android.opengl.GLES20.glShaderSource;

Next, we will add some public static final member variables that we can use in our
GameObject class later in the chapter. Although we will see exactly how they work
when we get around to using them, here is a quick preliminary explanation.

COPONENTS_PER_VERTEX is the number of values that will be used to represent a
single vertex (point) in our primitives that will make up our game objects. As you
can see, we initialize this to three coordinates: x, y, and z.

We also have FLOAT_SIZE, which is initialized to 4. This is the number of bytes in
a Java float. As we will see soon, OpenGL likes all its primitives passed into it in
the form of a ByteBuffer. We need to make sure we are precise about where in the
ByteBuffer each piece of information is.

Next, we declare STRIDE and initialize it to COMPONENTS_PER_VERTEX * FLOAT_
SIZE. As OpenGL uses the float type to hold virtually all of the data it works with,
STRIDE now equals the size in bytes of the data that represents a single vertex of an
object. Go ahead and add these members at the top of the class:

public class GLManager {

 // Some constants to help count the number of bytes between
 // elements of our vertex data arrays
 public static final int COMPONENTS_PER_VERTEX = 3;
 public static final int FLOAT_SIZE = 4;
 public static final int STRIDE =
 (COMPONENTS_PER_VERTEX)
 * FLOAT_SIZE;

 public static final int ELEMENTS_PER_VERTEX = 3;// x,y,z

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[261]

GLSL is a language in its own right and it also has its own types, and variables of
those types can be utilized. Here, we declare and initialize some strings that we can
use to refer to these variables more cleanly in our code.

Discussion of these types is beyond the scope of this book, but simply explained they
will represent a matrix (u_matrix), a location (a_position), and a color (u_Color).
We will see examples of the actual GLSL types these variables are in our shader code
very soon.

After the strings, we declare three int types. These three public static (but not final)
members will be used to store the location of there namesake types within our
shaders. This allows us to manipulate the values within the shader program before
we give OpenGL the final instruction to draw our primitives.

// Some constants to represent GLSL types in our shaders
public static final String U_MATRIX = "u_Matrix";
public static final String A_POSITION = "a_Position";
public static final String U_COLOR = "u_Color";

// Each of the above constants also has a matching int
// which will represent its location in the open GL glProgram
public static int uMatrixLocation;
public static int aPositionLocation;
public static int uColorLocation;

At last, we come to our GLSL code that is a vertex shader packed up in a string. Note
that we declare a variable called u_Matrix of type uniform mat4 and a_Position of
type attribute vec4. We will see in our GameObject class later how to get the locations
of these variables to enable us to pass in values for them from our Java code.

The line in the code that starts with void main() is were the actual shader code
executes from. Note that gl_position is assigned the value of the product of the
two variables we just declared. Also gl_PointSize is assigned the value of 3.0. This
will be the size we draw all our point primitives. Enter the code for the vertex shader
right after the previous block of code:

// A very simple vertexShader glProgram
// that we can define with a String

private static String vertexShader =
 "uniform mat4 u_Matrix;" +
 "attribute vec4 a_Position;" +

 "void main()" +
 "{" +

www.it-ebooks.info

http://www.it-ebooks.info/

Asteroids at 60 FPS with OpenGL ES 2

[262]

 "gl_Position = u_Matrix * a_Position;" +
 "gl_PointSize = 3.0;"+
 "}";

Next, we will implement the fragment shader. A few things are happening here.
First, the line precision mediump float tells OpenGL to draw with medium precision
and therefore medium speed. Then we can see our variable u_Color being declared
to type uniform vec4. We will see how we can pass a color value to this variable in
the GameObject class soon.

When execution begins at void main(), we simply assign u_Color to gl_
FragColor. So, whatever color is assigned to u_Colour, all the fragments will be that
color. Just after the fragment shader, we declare an int called program that will act
as a handle to our GL program.

Enter the code for the fragment shader right after the previous block of code:

// A very simple vertexShader glProgram
// that we can define with a String

private static String vertexShader =
 "uniform mat4 u_Matrix;" +
 "attribute vec4 a_Position;" +

 "void main()" +
 "{" +
 "gl_Position = u_Matrix * a_Position;" +
 "gl_PointSize = 3.0;"+
 "}";

This is a getter method that returns a handle to the GL program:

public static int getGLProgram(){
 return program;
}

This next method may look complex, but all it does is return a compiled and linked
program to the caller. It does so by calling the OpenGL's linkProgram method
with compileVertexShader() and compileFragmentShader() as arguments.
Next, we see these two new methods and that all they need to do is call our method
compileShader() with the OpenGL constant representing the type of shader and
the appropriate string that holds the matching shader GLSL code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[263]

Enter the three methods that we have just discussed into the GLManager class:

public static int buildProgram(){
 // Compile and link our shaders into a GL glProgram object
 return linkProgram(compileVertexShader(),compileFragmentShader());

}

private static int compileVertexShader() {
 return compileShader(GL_VERTEX_SHADER, vertexShader);
}

private static int compileFragmentShader() {
 return compileShader(GL_FRAGMENT_SHADER, fragmentShader);
}

Now we see what happens when our methods called compileShader(). First, we
create a handle to a shader based on the type parameter. Then, we pass in that
handle and the code to glShaderSource(). Finally, we compile the shader with
glCompileShader() and return a handle to the calling method:

private static int compileShader(int type, String shaderCode) {

 // Create a shader object and store its ID
 final int shader = glCreateShader(type);

 // Pass in the code then compile the shader
 glShaderSource(shader, shaderCode);
 glCompileShader(shader);

 return shader;
}

Now we can see the final step in the process. We create an empty program with
glCreateProgram(). Then we attach each of the compiled shaders in turn with
glAttachShader(), and finally link them into a program we can actually use with
glLinkProgram():

private static int linkProgram(int vertexShader, int fragmentShader) {

 // A handle to the GL glProgram -
 // the compiled and linked shaders
 program = glCreateProgram();

www.it-ebooks.info

http://www.it-ebooks.info/

Asteroids at 60 FPS with OpenGL ES 2

[264]

 // Attach the vertex shader to the glProgram.
 glAttachShader(program, vertexShader);

 // Attach the fragment shader to the glProgram.
 glAttachShader(program, fragmentShader);

 // Link the two shaders together into a glProgram.
 glLinkProgram(program);

 return program;
}
}// End GLManager

Note that we created a program and we have access to it via its handle and the
getProgram method. We also have access to all those public static members we
created, so we will be able to tinker with the variables in the shader programs from
our Java code.

The game's main loop – the renderer
Now we will see where the real meat of our code will go. Create a new class and
call it AsteroidsRenderer. This is the class that we attached as our renderer to the
GLSurfaceView. Add the import statements as follows, noting that some of them
are static:

import android.graphics.PointF;
import android.opengl.GLSurfaceView.Renderer;
import android.util.Log;
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
import static android.opengl.GLES20.GL_COLOR_BUFFER_BIT;
import static android.opengl.GLES20.glClear;
import static android.opengl.GLES20.glClearColor;
import static android.opengl.GLES20.glViewport;
import static android.opengl.Matrix.orthoM;

Now we will build the class. The first thing to note that we have mentioned before is
that the class implements Renderer, so we need to override three methods. They are
onSurfaceCreated(), onSurfaceChanged(), and onDrawFrame(). Also, into this
class, we will initially add a constructor to get everything set up, a createObjects
method where we will eventually initialize all our game objects, an update method
were we will update all our objects each frame, and a draw method were we will
draw all our objects each frame.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[265]

We will explore and explain each method as we implement it, and we will also see
how our methods fit in to the OpenGL renderer system, which dictates the flow of
this class.

To get started, we have some member variables that are worth looking at quite closely.

The Boolean debugging will be used to toggle output to the console on and off. The
frameCounter, averageFPS, and fps variables will not only be used for checking
what frame rates we are reaching but also for passing to our game objects that will
update themselves based on the elapsed time each frame.

Our first really interesting variable is the float array viewportMatrix. As the name
suggests, it will hold a matrix that OpenGL can use to calculate the viewport into our
game world.

We have a GameManager to hold a reference to the GameManager object, that
AsteroidsView passed into this class's constructor. Finally, we have two
PointF objects.

We will initialize the PointF objects in the constructor and use them for a few different
things to avoid dereferencing any objects in the main game loop. When the garbage
collector starts cleaning up discarded objects, even OpenGL will slow down. Avoiding
summoning the garbage collector will be a goal for the entire game.

Enter the member variables at the top of the AsteroidsRenderer class:

public class AsteroidsRenderer implements Renderer {

// Are we debugging at the moment

boolean debugging = true;

// For monitoring and controlling the frames per second

long frameCounter = 0;
long averageFPS = 0;
private long fps;

// For converting each game world coordinate
// into a GL space coordinate (-1,-1 to 1,1)
// for drawing on the screen

private final float[] viewportMatrix = new float[16];

// A class to help manage our game objects
// current state.

www.it-ebooks.info

http://www.it-ebooks.info/

Asteroids at 60 FPS with OpenGL ES 2

[266]

private GameManager gm;

// For capturing various PointF details without
// creating new objects in the speed critical areas

PointF handyPointF;
PointF handyPointF2;

Here is our constructor, where we initialize our GameManager reference from the
parameter and create our two handy PointF objects ready for use:

public AsteroidsRenderer(GameManager gameManager) {

 gm = gameManager;

 handyPointF = new PointF();
 handyPointF2 = new PointF();

}

This is the first overridden method. It is called every time a GLSurfaceView class
with attached renderer is created. We call glClearColor() to set which color
OpenGL will use each time it clears the screen. We then build our shader program
using our GLManager.buildProgram() method and call our createObjects method
that we will code soon.

@Override
public void onSurfaceCreated(GL10 glUnused, EGLConfig config) {

 // The color that will be used to clear the
 // screen each frame in onDrawFrame()
 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);

 // Get GLManager to compile and link the shaders into an object
 GLManager.buildProgram();

 createObjects();

}

This next overridden method is called once after onSurfaceCreated() and any
time the screen orientation changes. Here, we call the glViewport() method to tell
OpenGL the pixel coordinates to map the OpenGL coordinate system onto.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[267]

The OpenGL coordinate system is very different from the pixel coordinates we are
used to deal with in the previous two projects. The center of the screen is 0,0, the left
and bottom are -1, and the top and right are 1.

The preceding situation is further complicated by the fact that most screens are
not square, yet the range -1 to 1 must represent both x and y axes. Fortunately, our
glViewport() has dealt with this for us.

The last thing we see in this method is calling the orthoM method with our
viewportMatrix as the first parameter. OpenGL will now prepare viewportMatrix
for use within OpenGL itself. The method orthoM() creates a matrix to convert
coordinates into an orthographic view. If our coordinates are three-dimensional, it
will have the effect of making all the objects appear the same distance away. As we
are making a two-dimensional game, this is also suitable for us.

Enter the code for the onSurfaceChanged method:

@Override
 public void onSurfaceChanged(GL10 glUnused, int width, int height)
{

 // Make full screen
 glViewport(0, 0, width, height);

 /*
 Initialize our viewport matrix by passing in the starting
 range of the game world that will be mapped, by OpenGL to
 the screen. We will dynamically amend this as the player
 moves around.

www.it-ebooks.info

http://www.it-ebooks.info/

Asteroids at 60 FPS with OpenGL ES 2

[268]

 The arguments to setup the viewport matrix:
 our array,
 starting index in array,
 min x, max x,
 min y, max y,
 min z, max z)
 */

 orthoM(viewportMatrix, 0, 0,
 gm.metresToShowX, 0,
 gm.metresToShowY, 0f, 1f);
}

Here is our createObjects method and, as you can see, we create an object of type
SpaceShip and pass in the map height and width to the constructor. We will build
the SpaceShip class and its parent class GameObject later in this chapter. Enter the
createObjects method:

 private void createObjects() {
 // Create our game objects

 // First the ship in the center of the map
 gm.ship = new SpaceShip(gm.mapWidth / 2, gm.mapHeight /
 2);
 }

This is the overridden onDrawFrame method. It is called continuously by the system.
We can control when this is called by setting a render mode when we attach the
AsteroidsRenderer to the view but the default OpenGL controlled continuous
calling is exactly what we need.

We set startFrameTime to whatever the current system time is. Then, if isPlaying()
returns true, we call our soon-to-be-implemented update method. Then, we call
draw(), which will tell all of our objects to draw themselves.

We then update timeThisFrame and fps optionally outputting the average frames
per second, every 100 frames, if we are debugging.

Now we know that OpenGL will call onDrawFrame() up to hundreds of times per
second. We will conditionally call our update method each time as well as call our
draw method. We have effectively implemented our game loop apart from the actual
draw and update methods themselves.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[269]

Add the onDrawFrame method to the class:

@Override
public void onDrawFrame(GL10 glUnused) {

 long startFrameTime = System.currentTimeMillis();

 if (gm.isPlaying()) {
 update(fps);
 }

 draw();

 // Calculate the fps this frame
 // We can then use the result to
 // time animations and more.
 long timeThisFrame = System.currentTimeMillis() -
 startFrameTime;
 if (timeThisFrame >= 1) {
 fps = 1000 / timeThisFrame;
 }

 // Output the average frames per second to the console
 if (debugging) {
 frameCounter++;
 averageFPS = averageFPS + fps;
 if (frameCounter > 100) {
 averageFPS = averageFPS / frameCounter;
 frameCounter = 0;
 Log.e("averageFPS:", "" + averageFPS);
 }
 }
 }

Here is our update method, leave an empty body for now:

 private void update(long fps) {

 }

Now, we come to our draw method, which is called once per frame from the
onDrawFrame method. Here, we load up the ships current location into one of our
handy PointF objects. Clearly, as we haven't implemented our SpaceShip class yet,
this method call will produce an error.

www.it-ebooks.info

http://www.it-ebooks.info/

Asteroids at 60 FPS with OpenGL ES 2

[270]

The next thing we do in draw() is quite interesting. We modify our viewportMatrix
based on the current location in the game world and the values assigned to
metresToShowX and metresToShowY. Simply, we are centering on wherever the
ship is and extending out by half the distance we wish to show in all four directions.
Remember that, this happens in every frame, so our viewport will constantly follow
the player ship.

Next, we call glClear() to clear the screen with the color we set in
onSurfaceCreated(). The last thing we do in draw() is call a draw method on our
SpaceShip object. This implies quite a fundamental design change from both of our
previous games.

We mentioned this already, but here we can see it in action: each object will draw
itself. Also, notice that we pass in our newly configured viewportMatrix.

Enter the code for the draw method:

private void draw() {

 // Where is the ship?
 handyPointF = gm.ship.getWorldLocation();

 // Modify the viewport matrix orthographic projection
 // based on the ship location
 orthoM(viewportMatrix, 0,
 handyPointF.x - gm.metresToShowX / 2,
 handyPointF.x + gm.metresToShowX / 2,
 handyPointF.y - gm.metresToShowY / 2,
 handyPointF.y + gm.metresToShowY / 2,
 0f, 1f);

 // Clear the screen
 glClear(GL_COLOR_BUFFER_BIT);

 // Start drawing!

 // Draw the ship
 gm.ship.draw(viewportMatrix);
}
}

Now, we can build our GameObject super class, closely followed by its first
child, SpaceShip. We will see how these objects will manage to use OpenGL
to draw themselves.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[271]

Building an OpenGL-friendly,
GameObject super class
Let's dive straight into the code. As we will see, this GameObject will have a lot in
common with the GameObject class from the previous project. The most significant
difference will be that this latest GameObject will of course draw itself using a
handle to the GL program, primitive (vertex) data from a child class, and the
viewport matrix contained in viewportMatrix.

Create a new class, call it GameObject, and enter these import statements, noting
again that that some of them are static:

import android.graphics.PointF;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
import static android.opengl.GLES20.GL_FLOAT;
import static android.opengl.GLES20.GL_LINES;
import static android.opengl.GLES20.GL_POINTS;
import static android.opengl.GLES20.GL_TRIANGLES;
import static android.opengl.GLES20.glDrawArrays;
import static android.opengl.GLES20.glEnableVertexAttribArray;
import static android.opengl.GLES20.glGetAttribLocation;
import static android.opengl.GLES20.glGetUniformLocation;
import static android.opengl.GLES20.glUniform4f;
import static android.opengl.GLES20.glUniformMatrix4fv;
import static android.opengl.GLES20.glUseProgram;
import static android.opengl.Matrix.multiplyMM;
import static android.opengl.Matrix.setIdentityM;
import static android.opengl.Matrix.setRotateM;
import static android.opengl.Matrix.translateM;
import static android.opengl.GLES20.glVertexAttribPointer;
import static com.gamecodeschool.c9asteroids.GLManager.*;

There are lots of member variables, many are self-explanatory and commented just
to refresh our memories, but there are some totally new ones as well.

For example, we have an enum to represent each type of GameObject we will create.
The reason for this is we will draw some objects as points, some as lines, and one
as a triangle. The way that we use OpenGL is consistent between different types of
primitive; hence, it is why we have bundled the code into this parent class. However,
the final call to draw the primitive varies dependent on the type of primitive.
We can use the type variable in a switch statement to execute the correct type of a
draw method.

www.it-ebooks.info

http://www.it-ebooks.info/

Asteroids at 60 FPS with OpenGL ES 2

[272]

We also have an int numElements and numVertices that holds the number of points
that make up any given GameObject. These will be set from the child class as we will
see soon.

We have another float array called modelVertices, which will hold all the vertices
that make up a model.

Enter the first batch of member variables in the GameObject class and take a look at
the comments to refresh your memory or make clear what the various members will
eventually be used for:

public class GameObject {

 boolean isActive;

 public enum Type {SHIP, ASTEROID, BORDER, BULLET, STAR}

 private Type type;

 private static int glProgram =-1;

 // How many vertices does it take to make
 // this particular game object?
 private int numElements;
 private int numVertices;

 // To hold the coordinates of the vertices that
 // define our GameObject model
 private float[] modelVertices;

 // Which way is the object moving and how fast?
 private float xVelocity = 0f;
 private float yVelocity = 0f;
 private float speed = 0;
 private float maxSpeed = 200;

 // Where is the object centre in the game world?
 private PointF worldLocation = new PointF();

Next, we will add another batch of member variables. First, and most notably, we
have a FloatBuffer called vertices. As we know, OpenGL executes in native code
and FloatBuffers are how it likes to consume its data. We will see how we pack all
our vertices into this FloatBuffer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[273]

We will also use all the public static members from our GLManager class to help us
get it right.

Probably the second most interesting new member where OpenGL is concerned is
we have another three float arrays called modelMatrix, viewportModelMatrix, and
rotateViewportModelMatrix. These will be instrumental in helping OpenGL to
draw the GameObject class exactly as required. We will examine exactly how they
are initialized and used when we get to the draw method of this class.

We also have a bunch of members that hold different angles and rotation rates. How
we use and update these in order to inform OpenGL of the orientation of our objects,
we will see soon:

 // This will hold our vertex data that is
 // passed into the openGL glProgram
 // OPenGL likes FloatBuffer
 private FloatBuffer vertices;

 // For translating each point from the model (ship, asteroid etc)
 // to its game world coordinates
 private final float[] modelMatrix = new float[16];

 // Some more matrices for Open GL transformations
 float[] viewportModelMatrix = new float[16];
 float[] rotateViewportModelMatrix = new float[16];

 // Where is the GameObject facing?
 private float facingAngle = 90f;

 // How fast is it rotating?
 private float rotationRate = 0f;

 // Which direction is it heading?
 private float travellingAngle = 0f;

 // How long and wide is the GameObject?
 private float length;
 private float width;

We now implement the constructor. First, we check if we have previously compiled
the shaders, because we only need to do it once. If we haven't, this is what happens
inside the if(glProgarm == -1) block.

www.it-ebooks.info

http://www.it-ebooks.info/

Asteroids at 60 FPS with OpenGL ES 2

[274]

We call setGLProgram() followed by glUseProgram() with glProgram as the
argument. That is all we have to do, GLManager does the rest and our OpenGL
program is ready to use.

Before we go on, however, we save the locations of our key shader
variables by calling the respective methods (glGetUniformLocation() and
glGetAttrtibuteLocation) to get their locations within our GL program.
We will see in the draw method of this class how we use those locations to
manipulate values within the shaders.

Finally, we set isActive to true. Enter this method into the GameObject class:

public GameObject(){
 // Only compile shaders once
 if (glProgram == -1){
 setGLProgram();

 // tell OpenGl to use the glProgram
 glUseProgram(glProgram);

 // Now we have a glProgram we need the locations
 // of our three GLSL variables.
 // We will use these when we call draw on the object.
 uMatrixLocation = glGetUniformLocation(glProgram, U_MATRIX);
 aPositionLocation = glGetAttribLocation(glProgram, A_
 POSITION);
 uColorLocation = glGetUniformLocation(glProgram, U_COLOR);
 }

 // Set the object as active
 isActive = true;

}

Now we have a few getters and setters including getWorldLocation(), which
we called from the draw method in AsteroidsRenderer and setGLProgram().
This uses the GLManager class's static method getGLProgram() to get the handle
to our GL program.

Enter all these methods into the GameObject class:

public boolean isActive() {
 return isActive;
}

public void setActive(boolean isActive) {
 this.isActive = isActive;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[275]

}

public void setGLProgram(){
 glProgram = GLManager.getGLProgram();
}

public Type getType() {
 return type;
}

public void setType(Type t) {
 this.type = t;
}

public void setSize(float w, float l){
 width = w;
 length = l;

}

public PointF getWorldLocation() {
 return worldLocation;
}

public void setWorldLocation(float x, float y) {
 this.worldLocation.x = x;
 this.worldLocation.y = y;
}

The next method, setVertices() is a vital step in preparing an object to be drawn
by OpenGL. In each of our child classes, we will build an array of float types to
represent the vertices that make up the shape of the game object. Each game object
will obviously be different in shape, but the setVertices method does not need to
appreciate the difference, it just needs the data.

As we can see in the next block of code, the method receives a float array as a
parameter. It then stores the number of elements that is equal to the length of the
array in numElements. Note that the number of elements is different from the
number of vertices the elements represent. It takes three elements (x, y, and z) to
make one vertex. Therefore, we can store into numVertices the correct value by
dividing numElements by ELEMENTS_PER_VERTEX.

www.it-ebooks.info

http://www.it-ebooks.info/

Asteroids at 60 FPS with OpenGL ES 2

[276]

Now we can actually initialize up our ByteBuffer by calling allocateDirect() and
passing in our newly initialized variables along with FLOAT_SIZE. The ByteOrder.
nativeOrder method simply detects if the particular system's endianness, and
asFloatBuffer() tells ByteBuffer the type of data that will stored. We can now
store our array of vertices into our vertices ByteBuffer by calling vertices.
put(modelVertices). This data is now ready to be passed to OpenGL.

If you want to learn more about endianness, take a look at this
Wikipedia article:
http://en.wikipedia.org/wiki/Endianness

Enter the setVertices method into the GameObject class:

public void setVertices(float[] objectVertices){

 modelVertices = new float[objectVertices.length];
 modelVertices = objectVertices;

 // Store how many vertices and elements there is for future use
 numElements = modelVertices.length;

 numVertices = numElements/ELEMENTS_PER_VERTEX;

 // Initialize the vertices ByteBuffer object based on the
 // number of vertices in the ship design and the number of
 // bytes there are in the float type
 vertices = ByteBuffer.allocateDirect(
 numElements
 * FLOAT_SIZE)
 .order(ByteOrder.nativeOrder()).asFloatBuffer();

 // Add the ship into the ByteBuffer object
 vertices.put(modelVertices);

}

Now we get to see how we actually draw the contents of our ByteBuffer. At a
glance, the following code may look complex, but when we discuss the nature of the
data in our ByteBuffer and the steps that OpenGL goes through to draw this data,
we will see that it is actually quite straightforward.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Endianness
http://www.it-ebooks.info/

Chapter 9

[277]

As we have not written the code for our first GameObject child class, there is one
key thing to point out. The vertices that represent the shape of a game object are
zero based on its own center.

The OpenGL coordinate system has 0,0 as its center but, to make it clear, this is
not related. This is called model space. The next image is a representation of our
spaceship, in model space, that we will soon create:

It is this data that is contained within our ByteBuffer. This data takes no account
of orientation (is the ship or asteroid rotated), it takes no account of its position in
the game world and, as a reminder, it is totally unrelated to the OpenGL coordinate
system.

Therefore, before we draw our ByteBuffer, we need to convert this data, or, more
accurately, we need to prepare an appropriate matrix, which we will pass into
OpenGL with the data so that OpenGL will know how to use or convert the data.

I have split the draw method up into six chunks to talk about how we do this. Note
that our viewPort matrix is prepared in our AsteroidsRenderer class's draw
method, which is centered upon the location of the ship and based around the
proportion of game world we want to show and is passed in as a parameter.

First, we call glUseProgram() and pass in the handle to our program. Then we set
the internal pointer of our ByteBuffer to the start with vertices.position(0).

www.it-ebooks.info

http://www.it-ebooks.info/

Asteroids at 60 FPS with OpenGL ES 2

[278]

The glVertexAttributePointer method uses our aPositionLocation variable
along with our GLManager static constants and of course the vertices ByteBuffer
to associate our vertices with the aPosition variable in the vertex shader. Finally,
for this chunk of code, we tell OpenGL to enable the attribute array:

 public void draw(float[] viewportMatrix){

 // tell OpenGl to use the glProgram
 glUseProgram(glProgram);

 // Set vertices to the first byte
 vertices.position(0);

 glVertexAttribPointer(
 aPositionLocation,
 COMPONENTS_PER_VERTEX,
 GL_FLOAT,
 false,
 STRIDE,
 vertices);

 glEnableVertexAttribArray(aPositionLocation);

Now, we put our matrices to work. We create an identity matrix out of our
modelMatrix array by calling setIndentityM().

As we will see, we are going to be using and combining quite a lot of
matrices. An identity matrix acts as a starting point or container on which
we can build a matrix, which combines all the transformations that we
need to occur. A very simple but not entirely accurate way of thinking
about an identity matrix is that it is like the number 1. When you multiply
by an identity matrix, it doesn't cause any alteration to the other part of
the sum. However, the answer is correct for moving on to the next part of
the equation. If this is annoying you and you want to know more, take a
look at these really quick tutorials on matrices and the identity matrix.
Matrices:
https://www.khanacademy.org/math/precalculus/precalc
-matrices/Basic_matrix_operations/v/introduction-to
-the-matrix

Identity matrix:
https://www.khanacademy.org/math/precalculus/
precalc-matrices/zero-identity-matrix-tutorial/v/
identity-matrix

www.it-ebooks.info

https://www.khanacademy.org/math/precalculus/precalc -matrices/Basic_matrix_operations/v/introduction-to -the-matrix
https://www.khanacademy.org/math/precalculus/precalc -matrices/Basic_matrix_operations/v/introduction-to -the-matrix
https://www.khanacademy.org/math/precalculus/precalc -matrices/Basic_matrix_operations/v/introduction-to -the-matrix
https://www.khanacademy.org/math/precalculus/ precalc-matrices/zero-identity-matrix-tutorial/v/ identity-matrix
https://www.khanacademy.org/math/precalculus/ precalc-matrices/zero-identity-matrix-tutorial/v/ identity-matrix
https://www.khanacademy.org/math/precalculus/ precalc-matrices/zero-identity-matrix-tutorial/v/ identity-matrix
http://www.it-ebooks.info/

Chapter 9

[279]

We then pass our new modelMatrix into the translateM method. Translate is math
speak for move. Look closely at the arguments passed into translateM(). We are
passing in the x any y world locations of the object. This is how OpenGL knows
where the object is:

 // Translate model coordinates into world coordinates
 // Make an identity matrix to base our future calculations on
 // Or we will get very strange results
 setIdentityM(modelMatrix, 0);
 // Make a translation matrix

 /*
 Parameters:
 m matrix
 mOffset index into m where the matrix starts
 x translation factor x
 y translation factor y
 z translation factor z
 */
 translateM(modelMatrix, 0, worldLocation.x, worldLocation.y, 0);

We know that OpenGL has a matrix to translate our object to its world location.
It also has a ByteBuffer class with the model space coordinates, but how does it
convert translated model space coordinates to our viewport drawn using OpenGL
coordinate system?

It uses the viewport matrix, which is modified by each frame and passed into this
method. All we need to do is multiply viewportMatrix and the recently translated
modelMatrix together using multiplyMM(). This method creates the combined or
multiplied matrix and stores the result in viewportModelMatrix:

 // Combine the model with the viewport
 // into a new matrix
 multiplyMM(viewportModelMatrix, 0,
 viewportMatrix, 0, modelMatrix, 0);

We are almost done creating our matrix. The only other possible distortion that
OpenGL will need to make to the vertices in the ByteBuffer is to rotate them to
the facingAngle parameter.

Next, we create a rotation matrix appropriate to the current object's facing angle
and storing the result back in modelMatrix.

www.it-ebooks.info

http://www.it-ebooks.info/

Asteroids at 60 FPS with OpenGL ES 2

[280]

Then, we combine or multiply the newly rotated modelMatrix with our
viewportModelMatrix and store the result in rotateViewportModelMatrix.
This is our final matrix that we will pass into the OpenGL system:

 /*
 Now rotate the model - just the ship model

 Parameters
 rm returns the result
 rmOffset index into rm where the result matrix starts
 a angle to rotate in degrees
 x X axis component
 y Y axis component
 z Z axis component
 */
 setRotateM(modelMatrix, 0, facingAngle, 0, 0, 1.0f);

 // And multiply the rotation matrix into the model-viewport
 // matrix
 multiplyMM(rotateViewportModelMatrix, 0,
 viewportModelMatrix, 0, modelMatrix, 0);

Now we pass in the matrix using the glUniformMatrix4fv() method and use the
uMatrixLocation variable (which is the location of the matrix-related variable in
the vertex shader) and our final matrix in the arguments.

We also choose the color by calling glUniform4f() with the uColorLocation and
an RGBT (Red, Green, Blue, Transparency) value. All values are set to 1.0, so the
fragment shader will draw white.

 // Give the matrix to OpenGL

 glUniformMatrix4fv(uMatrixLocation, 1, false,
 rotateViewportModelMatrix, 0);

 // Assign a color to the fragment shader
 glUniform4f(uColorLocation, 1.0f, 1.0f, 1.0f, 1.0f);

Finally, we switch based on the object type and draw either points, lines, or
triangle primitives:

 // Draw the point, lines or triangle
 switch (type){
 case SHIP:
 glDrawArrays(GL_TRIANGLES, 0, numVertices);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[281]

 break;

 case ASTEROID:
 glDrawArrays(GL_LINES, 0, numVertices);
 break;

 case BORDER:
 glDrawArrays(GL_LINES, 0, numVertices);
 break;

 case STAR:
 glDrawArrays(GL_POINTS, 0, numVertices);
 break;

 case BULLET:
 glDrawArrays(GL_POINTS, 0, numVertices);
 break;
 }

} // End draw()

}// End class

Now that we have the fundamentals of our GameObject class, we can make a class to
represent our spaceship and draw it to the screen.

The spaceship
This class is nice and simple, although it will evolve with the project. The constructor
receives the starting location within the game world. We set the ship's type and
world location using the methods from the GameObject class, and we set a width
and height.

We declare and initialize some variables to simplify the initialization of the model
space coordinates, and then we go ahead and initialize a float array with three
vertices that represent the triangle that is our ship. Note that the values are based
around a center of x = 0 and y = 0.

All we do next is, call setVertices(), and GameObject will prepare the ByteBuffer
ready for OpenGL:

public class SpaceShip extends GameObject{

 public SpaceShip(float worldLocationX, float worldLocationY){
 super();

www.it-ebooks.info

http://www.it-ebooks.info/

Asteroids at 60 FPS with OpenGL ES 2

[282]

 // Make sure we know this object is a ship
 // So the draw() method knows what type
 // of primitive to construct from the vertices

 setType(Type.SHIP);

 setWorldLocation(worldLocationX,worldLocationY);

 float width = 15;
 float length = 20;

 setSize(width, length);

 // It will be useful to have a copy of the
 // length and width/2 so we don't have to keep dividing by
 2
 float halfW = width / 2;
 float halfL = length / 2;

 // Define the space ship shape
 // as a triangle from point to point
 // in anti clockwise order
 float [] shipVertices = new float[]{

 - halfW, - halfL, 0,
 halfW, - halfL, 0,
 0, 0 + halfL, 0

 };

 setVertices(shipVertices);

 }

}

At last, we can see the fruits of our labor.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[283]

Drawing at 60 + FPS
In three simple steps, we will be able to glimpse our spaceship:

• Add a SpaceShip object to the GameManager member variables:
private boolean playing = false;

 // Our first game object
 SpaceShip ship;

 int screenWidth;

• Add a call to the new SpaceShip() to the createObjects method:
private void createObjects() {

 // Create our game objects
 // First the ship in the center of the map
 gm.ship = new SpaceShip(gm.mapWidth / 2, gm.mapHeight / 2);
}

• Add the call to draw the spaceship in each frame in the draw method of
AsteroidsRenderer:

// Start drawing!
// Draw the ship
gm.ship.draw(viewportMatrix);

www.it-ebooks.info

http://www.it-ebooks.info/

Asteroids at 60 FPS with OpenGL ES 2

[284]

Run the game and see the output:

Not exactly impressive visuals, but it is running between 67 and 212 frames per
second in debug mode while outputting to the console on an ageing Samsung Galaxy
S2 phone.

It will be our aim throughout the project to add hundreds of objects and keep the
frames per second over 60.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[285]

One of the book's reviewers reported frame rates in excess of 1000 per
second on a Nexus 5! It will therefore be worth considering a maximum
frame rate locking strategy to save battery life if you were planning to
release this to the Google Play store.

Summary
Setting up a drawing system was a little bit long-winded. However, now that it is
done, we can churn out new objects much more easily. All we have to do is define
the type and the vertices, then we can draw them with ease.

It is because of this ground work that the next chapter will be much more visually
rewarding. Next, we will create blinking stars, a game world border, spinning and
moving asteroids, whizzing bullets, and a HUD, as well as add full controls and
motion to the spaceship.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[287]

Move and Draw with
OpenGL ES 2

In this chapter, we will implement all the graphics, game play, and movement. In
just over 30 pages, we will complete everything except collision detection. We can
achieve this much because of the groundwork we laid in the last chapter.

First, we will draw a static border around our game world, then some blinking
stars, followed by adding movement to our spaceship as well as some bullets.
After that, we will quickly add controls for the player and we will be whizzing
around the screen.

We will also make some noise by implementing our SoundManager class with some
new sound FX.

Once this is done, we will add randomly shaped asteroids that move across the
world while spinning around at the same time.

Then, we can add a HUD to highlight the touchable areas of the screen and provide
a tally of the remaining player lives and asteroids that need destroying before the
next level.

Drawing a static game border
In this simple class, we define four sets of points that will represent four lines.
Unsurprisingly, the GameObject class will draw the border using these points
as the end points of lines.

In the constructor, which is the entirety of the class, we set the type by calling
setType(), the world location as the center of the map, and height and width
as the height and width of the entire map.

www.it-ebooks.info

http://www.it-ebooks.info/

Move and Draw with OpenGL ES 2

[288]

Then, we define the four lines in a float array and call setVertices() to
prepare a FloatBuffer.

Create a new class called Border and add the following code:

public class Border extends GameObject{

 public Border(float mapWidth, float mapHeight){

 setType(Type.BORDER);
 //border center is the exact center of map
 setWorldLocation(mapWidth/2,mapHeight/2);

 float w = mapWidth;
 float h = mapHeight;
 setSize(w, h);

 // The vertices of the border represent four lines
 // that create a border of a size passed into the constructor
 float[] borderVertices = new float[]{
 // A line from point 1 to point 2
 - w/2, -h/2, 0,
 w/2, -h/2, 0,
 // Point 2 to point 3
 w/2, -h/2, 0,
 w/2, h/2, 0,
 // Point 3 to point 4
 w/2, h/2, 0,
 -w/2, h/2, 0,
 // Point 4 to point 1
 -w/2, h/2, 0,
 - w/2, -h/2, 0,
 };

 setVertices(borderVertices);

 }

}

We can then declare a Border object as a member of GameManager like this:

// Our game objects
SpaceShip ship;
Border border;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[289]

Initialize it in the createObjects method of AsteroidsRenderer like this:

// Create our game objects

// First the ship in the center of the map
gm.ship = new SpaceShip(gm.mapWidth / 2, gm.mapHeight / 2);

// The deadly border
gm.border = new Border(gm.mapWidth, gm.mapHeight);

Now, we can draw our border by adding a line of code into the draw method of the
AsteroidsRendrer class:

gm.ship.draw(viewportMatrix);
gm.border.draw(viewportMatrix);

You can now run the game. If you want to actually see the border, you can change
the location to which we initialize the ship to somewhere near the border. Remember
that in the draw method, we center the viewport around the ship. To see the border,
change this one line in the SpaceShip class to this:

setWorldLocation(10,10);

Run the game to take a look.

Change it back to this:

setWorldLocation(worldLocationX,worldLocationY);

Now, we will fill up the area within the border with stars.

www.it-ebooks.info

http://www.it-ebooks.info/

Move and Draw with OpenGL ES 2

[290]

Twinkling stars
We will get a bit more mobile than a static border. Here, we will add an update
method to a simple Star class, which can be used to randomly switch the star on
and off.

We set the type as normal and create a random location for the star within the
confines of the border and call setWorldLocation() as always.

Stars will be drawn as points, so our vertex array will simply contain one vertex at
model space 0,0,0. Then, we call setVertices() as usual.

Create a new class, call it Star, and enter the discussed code:

public class Star extends GameObject{

 // Declare a random object here because
 // we will use it in the update() method
 // and we don't want GC to have to keep clearing it up
 Random r;

 public Star(int mapWidth, int mapHeight){
 setType(Type.STAR);
 r = new Random();
 setWorldLocation(r.nextInt(mapWidth),r.nextInt(mapHeight));

 // Define the star
 // as a single point
 // in exactly the coordinates as its world location
 float[] starVertices = new float[]{

 0,
 0,
 0

 };

 setVertices(starVertices);

 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[291]

Here is our Star class's update method. As we can see, there is a one in a 1000
chance in each frame that the star will switch its status. For more blinking, use a
lower seed, and for less blinking, use a higher seed.

public void update(){

 // Randomly twinkle the stars
 int n = r.nextInt(1000);
 if(n == 0){
 // Switch on or off
 if(isActive()){
 setActive(false);
 }else{
 setActive(true);
 }
 }

}

We then declare a Star array, as a member of GameManager, and an extra int
variable to control how many stars we want to draw, as follows:

// Our game objects
SpaceShip ship;
Border border;
Star[] stars;
int numStars = 200;

Initialize the array of Star objects in the createObjects method of
AsteroidsRenderer as follows:

// The deadly border
gm.border = new Border(gm.mapWidth, gm.mapHeight);

// Some stars
gm.stars = new Star[gm.numStars];
for (int i = 0; i < gm.numStars; i++) {

 // Pass in the map size so the stars no where to spawn
 gm.stars[i] = new Star(gm.mapWidth, gm.mapHeight);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Move and Draw with OpenGL ES 2

[292]

Now, we can draw our stars by adding these lines of code into the draw method
of the AsteroidsRenderer class. Note that we draw the stars first as they are in
the background.

// Start drawing!

// Some stars
for (int i = 0; i < gm.numStars; i++) {

 // Draw the star if it is active
 if(gm.stars[i].isActive()) {
 gm.stars[i].draw(viewportMatrix);
 }
}

gm.ship.draw(viewportMatrix);
gm.border.draw(viewportMatrix);

Of course, to make them blink, we call their update method from the
AsteroidsRenderer class's update method like this:

private void update(long fps) {

 // Update (twinkle) the stars
 for (int i = 0; i < gm.numStars; i++) {
 gm.stars[i].update();
 }

}

You can now run the game:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[293]

Bringing the spaceship to life
First, we need to add a bit more functionality to our GameObject class. We do so in
GameObject because bullets and asteroids share a surprising amount of similarities
with a spaceship.

We need a bunch of getters and setters to get and set the rotation rate, traveling
angle, and facing angle. Add the following methods to the GameObject class:

public void setRotationRate(float rotationRate) {
 this.rotationRate = rotationRate;
}

public float getTravellingAngle() {
 return travellingAngle;
}

public void setTravellingAngle(float travellingAngle) {
 this.travellingAngle = travellingAngle;
}

public float getFacingAngle() {
 return facingAngle;
}

public void setFacingAngle(float facingAngle) {
 this.facingAngle = facingAngle;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Move and Draw with OpenGL ES 2

[294]

Now, we add a move method, which adjusts the x and y coordinates as well as the
facingAngle of the object based on the current frames per second. Add the move
method:

void move(float fps){
 if(xVelocity != 0) {
 worldLocation.x += xVelocity / fps;
 }

 if(yVelocity != 0) {
 worldLocation.y += yVelocity / fps;
 }

 // Rotate
 if(rotationRate != 0) {
 facingAngle = facingAngle + rotationRate / fps;
 }

}

To complete our additions to the GameObject class, add these getters and setters for
velocity, speed, and maximum speed:

public float getxVelocity() {
 return xVelocity;
}

public void setxVelocity(float xVelocity) {
 this.xVelocity = xVelocity;
}

public float getyVelocity() {
 return yVelocity;
}

public void setyVelocity(float yVelocity) {
 this.yVelocity = yVelocity;
}

public float getSpeed() {
 return speed;
}

public void setSpeed(float speed) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[295]

 this.speed = speed;
}

public float getMaxSpeed() {
 return maxSpeed;
}

public void setMaxSpeed(float maxSpeed) {
 this.maxSpeed = maxSpeed;
}

We can make some additions to the SpaceShip class. Add these three members to
the SpaceShip class to control if the player's ship is turning or moving forward:

boolean isThrusting;
private boolean isPressingRight = false;
private boolean isPressingLeft = false;

Now, inside the SpaceShip constructor, let's set the maximum speed of the ship. I
have highlighted the new line of code among the existing code:

setSize(width, length);

setMaxSpeed(150);

// It will be useful to have a copy of the

Next, in the SpaceShip class, we add an update method that, first of all, increases
and decreases the speed based on whether isThrusting is true or false.

public void update(long fps){

float speed = getSpeed();
if(isThrusting) {
 if (speed < getMaxSpeed()){
 setSpeed(speed + 5);
 }

 }else{
 if(speed > 0) {
 setSpeed(speed - 3);
 }else {
 setSpeed(0);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Move and Draw with OpenGL ES 2

[296]

Then, we set the x and y velocity based on the angle, which way the ship is facing,
and the speed.

We use speed multiplied by the cosine of the angle the ship is facing
to set the velocity on the x axis. This works because the cosine function
is a perfect variant that will return a value of -1 or 1, when the ship is
facing exactly left or right, respectively; the variant returns a precise
value of 0 when the ship is pointing exactly up or down. It also returns
fine values in between as well. The sine of the angle works in exactly the
same way on the y axis. The slightly convoluted looking code is because
we need to convert our angle to radians and we must add 90 degrees to
our facingAngle because 0 degrees is pointing to three o'clock. This
fact is not conducive to using it on an x, y plane the way we have it, so
we modify it by 90 degrees and the ship moves as expected. For more
information about how this works check out this tutorial:
http://gamecodeschool.com/essentials/calculating-
heading-in-2d-games-using-trigonometric-functions-
part-1/

setxVelocity((float)
 (speed* Math.cos(Math.toRadians(getFacingAngle() + 90))));

setyVelocity((float)
 (speed* Math.sin(Math.toRadians(getFacingAngle() + 90))));

Now, we set the rotation rate based on whether the player is turning left or right.
Finally, we call move() to put all the updates into effect.

if(isPressingLeft){
 setRotationRate(360);
}

else if(isPressingRight){
 setRotationRate(-360);
 }else{
 setRotationRate(0);
 }

 move(fps);
}

www.it-ebooks.info

http://gamecodeschool.com/essentials/calculating-heading-in-2d-games-using-trigonometric-functions-part-1/
http://gamecodeschool.com/essentials/calculating-heading-in-2d-games-using-trigonometric-functions-part-1/
http://gamecodeschool.com/essentials/calculating-heading-in-2d-games-using-trigonometric-functions-part-1/
http://www.it-ebooks.info/

Chapter 10

[297]

Now, we need to add a pullTrigger method, which for now, we just return true.
We also provide three methods for our future InputController to call and trigger
the update method to make its various changes.

public boolean pullTrigger() {
 //Try and fire a shot
 // We could control rate of fire from here
 // But lets just return true for unrestricted rapid fire
 // You could remove this method and any code which calls it

 return true;
}

public void setPressingRight(boolean pressingRight) {
 isPressingRight = pressingRight;
}

public void setPressingLeft(boolean pressingLeft) {
 isPressingLeft = pressingLeft;
}

public void toggleThrust() {
 isThrusting = ! isThrusting;
}

We are already drawing the ship in each frame, but we need to add one line of code
in the AsteroidsRenderer class's update method. Add this line of code to call the
SpaceShip class's update method:

// Update (twinkle) the stars
for (int i = 0; i < gm.numStars; i++) {
 gm.stars[i].update();
}

// Run the ship,s update() method
gm.ship.update(fps);

Obviously, we can't actually move until we add the player controls. Let's quickly add
some bullets to the game. Then, we will add sound and controls so that we can see
and hear the cool new features we added.

www.it-ebooks.info

http://www.it-ebooks.info/

Move and Draw with OpenGL ES 2

[298]

Rapid fire bullets
I've been addicted to games since Pong in the '70s, and remember my delight when
a friend actually had a Space Invaders machine in his home for about a week.
Although what really made asteroids so much better than Space Invaders, was
how quickly you could shoot. In that tradition, we will make a satisfying, rapid fire
stream of bullets.

Create a new class called Bullet, which has one vertex and will be drawn with a
point. Note that we also declare and initialize an inFlight Boolean.

public class Bullet extends GameObject {

 private boolean inFlight = false;

 public Bullet(float shipX, float shipY) {
 super();

 setType(Type.BULLET);

 setWorldLocation(shipX, shipY);

 // Define the bullet
 // as a single point
 // in exactly the coordinates as its world location
 float[] bulletVertices = new float[]{

 0,
 0,
 0

 };

 setVertices(bulletVertices);

}

Next, we have the shoot method that sets the facingAngle of the bullet to that of
the ship. This will cause the bullet to move in the direction the ship was facing at the
time the fire button was pressed. We also set inFlight to true and see how this is
used in the update method. Finally, we set the speed to 300.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[299]

We also add a resetBullet method, which sets the bullet inside the ship and cancels
its velocity and speed. This gives us a clue as to how we will implement our bullets.
The bullets will sit invisibly inside the ship until they are fired.

public void shoot(float shipFacingAngle){

 setFacingAngle(shipFacingAngle);
 inFlight = true;
 setSpeed (300);
}

public void resetBullet(PointF shipLocation){

 // Stop moving if bullet out of bounds
 inFlight = false;
 setxVelocity(0);
 setyVelocity(0);
 setSpeed(0);
 setWorldLocation(shipLocation.x, shipLocation.y);

}

public boolean isInFlight(){
 return inFlight;
}

Now, we move the bullet based on its facingAngle and speed, only if inFlight is
true. Otherwise, we keep the bullet inside the ship. Then, we call move().

public void update(long fps, PointF shipLocation){
 // Set the velocity if bullet in flight
 if(inFlight){
 setxVelocity((float)(getSpeed()*
 Math.cos(Math.toRadians(getFacingAngle() + 90))));
 setyVelocity((float)(getSpeed()*
 Math.sin(Math.toRadians(getFacingAngle() + 90))));
 }else{
 // Have it sit inside the ship
 setWorldLocation(shipLocation.x, shipLocation.y);
 }

 move(fps);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Move and Draw with OpenGL ES 2

[300]

Now, we have a Bullet class, we can declare an array, to hold a bunch of objects of
this type in our GameManager class.

int numStars = 200;
Bullet [] bullets;
int numBullets = 20;

Initialize them in createObjects() right after our stars from the last section in
AsteroidsRenderer. Note how we initialize their location in the game world as
the center of the ship.

// Some bullets
gm.bullets = new Bullet[gm.numBullets];
for (int i = 0; i < gm.numBullets; i++) {
 gm.bullets[i] = new Bullet(
 gm.ship.getWorldLocation().x,
 gm.ship.getWorldLocation().y);
}

Update them in the update method, again right after our blinking stars.

// Update all the bullets
for (int i = 0; i < gm.numBullets; i++) {

 // If not in flight they will need the ships location
 gm.bullets[i].update(fps, gm.ship.getWorldLocation());

}

Draw them in the draw method, once more, after the stars.

for (int i = 0; i < gm.numBullets; i++) {
 gm.bullets[i].draw(viewportMatrix);
}

The bullets are now ready to be fired!

We will add a SoundManager and InputController class, then we can see our ship
and its rapid fire gun in action.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[301]

Reusing existing classes
Let's quickly add our SoundManager and InputController classes to this project
because they only need a little tweak to accommodate our needs here too.

Add a member for a SoundManager and an InputController object in both the
AsteroidsView and AsteroidsRenderer classes.

private InputController ic;
private SoundManager sm;

Initialize the new objects in the onCreate method of the AsteroidsView class and
call the loadSound method like this:

public AsteroidsView(Context context, int screenX, int screenY) {
 super(context);

 sm = new SoundManager();
 sm.loadSound(context);
 ic = new InputController(screenX, screenY);
 gm = new GameManager(screenX, screenY);

Also in AsteroidsView, add an extra two arguments to the call to the
AsteroidsRenderer constructor to pass in references to the SoundManager and
InputController objects.

setEGLContextClientVersion(2);
setRenderer(new AsteroidsRenderer(gm,sm,ic));

Now in the AsteroidsRenderer constructor add the two extra parameters and
initialize the two new members like this:

public AsteroidsRenderer(GameManager gameManager,
 SoundManager soundManager, InputController inputController) {

 gm = gameManager;
 sm = soundManager;
 ic = inputController;

 handyPointF = new PointF();
 handyPointF2 = new PointF();

}

You will have errors in your IDE until we add the two classes. We will do that now.

www.it-ebooks.info

http://www.it-ebooks.info/

Move and Draw with OpenGL ES 2

[302]

Adding the SoundManager class
The SoundManager class works exactly the same way as it did with the previous
project, so there is nothing new to explain here.

Add all the sound files from the download bundle Chapter10/assets folder to the
assets folder of your project. As in the last two projects, you may need to create the
assets folder in the .../app/src/main folder of your project.

As usual, you can use the sound effects provided or create
your own.

Now, add a new class to the project called SoundManager. Note that the functionality
of the class is identical to the last project, but the code is different simply because
of the names of the sound files and their related variables. Add this code to the
SoundManager class:

public class SoundManager {
 private SoundPool soundPool;
 private int shoot = -1;
 private int thrust = -1;
 private int explode = -1;
 private int shipexplode = -1;
 private int ricochet = -1;
 private int blip = -1;
 private int nextlevel = -1;
 private int gameover = -1;

 public void loadSound(Context context){
 soundPool = new SoundPool(10,
 AudioManager.STREAM_MUSIC,0);
 try{
 //Create objects of the 2 required classes
 AssetManager assetManager = context.getAssets();
 AssetFileDescriptor descriptor;

 //create our fx
 descriptor = assetManager.openFd("shoot.ogg");
 shoot = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("thrust.ogg");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[303]

 thrust = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("explode.ogg");
 explode = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("shipexplode.ogg");
 shipexplode = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("ricochet.ogg");
 ricochet = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("blip.ogg");
 blip = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("nextlevel.ogg");
 nextlevel = soundPool.load(descriptor, 0);

 descriptor = assetManager.openFd("gameover.ogg");
 gameover = soundPool.load(descriptor, 0);

 }catch(IOException e){
 //Print an error message to the console
 Log.e("error", "failed to load sound files");
 }
 }

 public void playSound(String sound){
 switch (sound){
 case "shoot":
 soundPool.play(shoot, 1, 1, 0, 0, 1);
 break;

 case "thrust":
 soundPool.play(thrust, 1, 1, 0, 0, 1);
 break;

 case "explode":
 soundPool.play(explode, 1, 1, 0, 0, 1);
 break;

 case "shipexplode":
 soundPool.play(shipexplode, 1, 1, 0, 0, 1);

www.it-ebooks.info

http://www.it-ebooks.info/

Move and Draw with OpenGL ES 2

[304]

 break;

 case "ricochet":
 soundPool.play(ricochet, 1, 1, 0, 0, 1);
 break;

 case "blip":
 soundPool.play(blip, 1, 1, 0, 0, 1);
 break;

 case "nextlevel":
 soundPool.play(nextlevel, 1, 1, 0, 0, 1);
 break;

 case "gameover":
 soundPool.play(gameover, 1, 1, 0, 0, 1);
 break;

 }

 }
}

We are now ready to call playSound() from anywhere we have a reference to our
new class.

Adding the InputController class
This works the same way as it did in the last project, except that we call the
appropriate PlayerShip methods instead of Bob's. Furthermore, we will not be
moving the viewport while paused, so it is not necessary to handle the screen
touches differently when the game is paused; making this InputController a
little simpler and shorter.

Add the onTouchEvent method to the AsteroidsView class to pass responsibility
for handling touches to InputController:

@Override
 public boolean onTouchEvent(MotionEvent motionEvent) {
 ic.handleInput(motionEvent, gm, sm);
 return true;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[305]

Add a new class called InputController, and add the following code which is
straightforward, except for the way that we handle the player firing a shot.

We declare a member int currentBullet that keeps track of which bullet from our
soon-to-be-declared array we are going to shoot next. Then, we can count the bullets
out when the fire button is pressed and go back to the first bullet, right after the last
one in the array is fired.

Create a new class called InputController and enter the following code:

public class InputController {

 private int currentBullet;

 Rect left;
 Rect right;
 Rect thrust;
 Rect shoot;
 Rect pause;

 InputController(int screenWidth, int screenHeight) {

 //Configure the player buttons
 int buttonWidth = screenWidth / 8;
 int buttonHeight = screenHeight / 7;
 int buttonPadding = screenWidth / 80;

 left = new Rect(buttonPadding,
 screenHeight - buttonHeight - buttonPadding,
 buttonWidth,
 screenHeight - buttonPadding);

 right = new Rect(buttonWidth + buttonPadding,
 screenHeight - buttonHeight - buttonPadding,
 buttonWidth + buttonPadding + buttonWidth,
 screenHeight - buttonPadding);

 thrust = new Rect(screenWidth - buttonWidth -
 buttonPadding,
 screenHeight - buttonHeight - buttonPadding -
 buttonHeight - buttonPadding,
 screenWidth - buttonPadding,
 screenHeight - buttonPadding - buttonHeight -
 buttonPadding);

www.it-ebooks.info

http://www.it-ebooks.info/

Move and Draw with OpenGL ES 2

[306]

 shoot = new Rect(screenWidth - buttonWidth -
 buttonPadding,
 screenHeight - buttonHeight - buttonPadding,
 screenWidth - buttonPadding,
 screenHeight - buttonPadding);

 pause = new Rect(screenWidth - buttonPadding -
 buttonWidth,
 buttonPadding,
 screenWidth - buttonPadding,
 buttonPadding + buttonHeight);

Let's bundle all our buttons together in a list and make them available with a
public method.

 }
 public ArrayList getButtons(){

 //create an array of buttons for the draw method
 ArrayList<Rect> currentButtonList = new ArrayList<>();
 currentButtonList.add(left);
 currentButtonList.add(right);
 currentButtonList.add(thrust);
 currentButtonList.add(shoot);
 currentButtonList.add(pause);
 return currentButtonList;
 }

Next, we handle the input as we have before, except we call our Ship class's
methods.

public void handleInput(MotionEvent motionEvent,GameManager l,
 SoundManager sound){

 int pointerCount = motionEvent.getPointerCount();

 for (int i = 0; i < pointerCount; i++) {
 int x = (int) motionEvent.getX(i);
 int y = (int) motionEvent.getY(i);

 switch (motionEvent.getAction() &
 MotionEvent.ACTION_MASK) {

 case MotionEvent.ACTION_DOWN:
 if (right.contains(x, y)) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[307]

 l.ship.setPressingRight(true);
 l.ship.setPressingLeft(false);
 } else if (left.contains(x, y)) {
 l.ship.setPressingLeft(true);
 l.ship.setPressingRight(false);
 } else if (thrust.contains(x, y)) {
 l.ship.toggleThrust();
 } else if (shoot.contains(x, y)) {
 if (l.ship.pullTrigger()) {
 l.bullets[currentBullet].shoot
 (l.ship.getFacingAngle());

 currentBullet++;
 // If we are on the last bullet restart
 // from the first one again
 if(currentBullet == l.numBullets){
 currentBullet = 0;
 }

 sound.playSound("shoot");
 }

 } else if (pause.contains(x, y)) {
 l.switchPlayingStatus();
 }
 break;

 case MotionEvent.ACTION_UP:
 if (right.contains(x, y)) {
 l.ship.setPressingRight(false);
 } else if (left.contains(x, y)) {
 l.ship.setPressingLeft(false);
 }

 break;

 case MotionEvent.ACTION_POINTER_DOWN:
 if (right.contains(x, y)) {
 l.ship.setPressingRight(true);
 l.ship.setPressingLeft(false);
 } else if (left.contains(x, y)) {
 l.ship.setPressingLeft(true);
 l.ship.setPressingRight(false);

www.it-ebooks.info

http://www.it-ebooks.info/

Move and Draw with OpenGL ES 2

[308]

 } else if (thrust.contains(x, y)) {
 l.ship.toggleThrust();
 } else if (shoot.contains(x, y)) {
 if (l.ship.pullTrigger()) {
 l.bullets[currentBullet].shoot
 (l.ship.getFacingAngle());

 currentBullet++;
 // If we are on the last bullet restart
 // from the first one again
 if(currentBullet == l.numBullets){
 currentBullet = 0;
 }
 sound.playSound("shoot");
 }
 } else if (pause.contains(x, y)) {
 l.switchPlayingStatus();
 }
 break;

 case MotionEvent.ACTION_POINTER_UP:
 if (right.contains(x, y)) {
 l.ship.setPressingRight(false);
 } else if (left.contains(x, y)) {
 l.ship.setPressingLeft(false);
 }

 break;
 }
 }

 }
}

Now, we can fly around and loose off a few space rounds! Of course, you will have
to estimate the screen positions until we get our HUD drawn later in this chapter.
Don't forget that the player needs to tap the pause button (top-right) first.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[309]

Note that at the moment, we don't use the resetBullet method, and
that once you have shot your twenty bullets, you will not be able to shoot
any more. We can do a quick check to see if the bullet was at a location
outside the border and then call resetBullet, but we will handle this
fully, in conjunction with all the collision detection, in the next chapter.

Of course, we can't have an asteroids game without any asteroids.

Drawing and moving the asteroids
At last, we will add our cool, spinning asteroids. First, we will look at the constructor
that is fairly similar to the other game object constructors, except that we set the
world location randomly. However, take a little extra care not to spawn them in the
center of the map, where the spaceship starts the game.

Create a new class called Asteroid and add this constructor. Note that we have not
defined any vertices. We delegate this to the generatePoints method that we will
see soon.

public class Asteroid extends GameObject{

 PointF[] points;

 public Asteroid(int levelNumber, int mapWidth, int mapHeight){
 super();

 // set a random rotation rate in degrees per second
 Random r = new Random();
 setRotationRate(r.nextInt(50 * levelNumber) + 10);

 // travel at any random angle
 setTravellingAngle(r.nextInt(360));

 // Spawn asteroids between 50 and 550 on x and y
 // And avoid the extreme edges of map
 int x = r.nextInt(mapWidth - 100)+50;
 int y = r.nextInt(mapHeight - 100)+50;

 // Avoid the center where the player spawns
 if(x > 250 && x < 350){ x = x + 100;}
 if(y > 250 && y < 350){ y = y + 100;}

 // Set the location

www.it-ebooks.info

http://www.it-ebooks.info/

Move and Draw with OpenGL ES 2

[310]

 setWorldLocation(x,y);

 // Make them a random speed with the maximum
 // being appropriate to the level number
 setSpeed(r.nextInt(25 * levelNumber)+1);

 setMaxSpeed(140);

 // Cap the speed
 if (getSpeed() > getMaxSpeed()){
 setSpeed(getMaxSpeed());
 }

 // Make sure we know this object is a ship
 setType(Type.ASTEROID);

 // Define a random asteroid shape
 // Then call the parent setVertices()
 generatePoints();

 }

Our update method simply calculates the velocity based on speed and traveling
angle as we did for the SpaceShip class. It then calls move() in the usual way.

public void update(float fps){

 setxVelocity ((float) (getSpeed() * Math.cos(Math.toRadians
 (getTravellingAngle() + 90))));

 setyVelocity ((float) (getSpeed() *
 Math.sin(Math.toRadians(getTravellingAngle() + 90))));

 move(fps);

}

Here we see the generatePoints method, which will create a randomly shaped
asteroid. Simply explained, each asteroid will have six vertices. Each vertex has
a randomly generated position but within fairly strict limits, so we don't get any
overlapping lines.

// Create a random asteroid shape
public void generatePoints(){

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[311]

 points = new PointF[7];

 Random r = new Random();
 int i;

 // First a point roughly centre below 0
 points[0] = new PointF();
 i = (r.nextInt(10))+1;
 if(i % 2 == 0){i = -i;}
 points[0].x = i;
 i = -(r.nextInt(20)+5);
 points[0].y = i;

 // Now a point still below centre but to the right and up a
 bit
 points[1] = new PointF();
 i = r.nextInt(14)+11;
 points[1].x = i;
 i = -(r.nextInt(12)+1);
 points[1].y = i;

 // Above 0 to the right
 points[2] = new PointF();
 i = r.nextInt(14)+11;
 points[1].x = i;
 i = r.nextInt(12)+1;
 points[2].y = i;

 // A point roughly centre above 0
 points[3] = new PointF();
 i = (r.nextInt(10))+1;
 if(i % 2 == 0){i = -i;}
 points[3].x = i;
 i = r.nextInt(20)+5;
 points[3].y = i;

 // left above 0
 points[4] = new PointF();
 i = -(r.nextInt(14)+11);
 points[4].x = i;
 i = r.nextInt(12)+1;
 points[4].y = i ;

 // left below 0

www.it-ebooks.info

http://www.it-ebooks.info/

Move and Draw with OpenGL ES 2

[312]

 points[5] = new PointF();
 i = -(r.nextInt(14)+11);
 points[5].x = i;
 i = -(r.nextInt(12)+1);

 points[5].y = i;

Now, we have our six points that we use to build our array of floats that represent
the vertices. Finally, we call setVertices() to create our ByteBuffer. Note that the
asteroids will be drawn as a series of lines, which is why the last vertex in the array is
the same as the first.

 // Now use these points to draw our asteroid
 float[] asteroidVertices = new float[]{
 // First point to second point
 points[0].x, points[0].y, 0,
 points[1].x, points[1].y, 0,

 // 2nd to 3rd
 points[1].x, points[1].y, 0,
 points[2].x, points[2].y, 0,

 // 3 to 4
 points[2].x, points[2].y, 0,
 points[3].x, points[3].y, 0,

 // 4 to 5
 points[3].x, points[3].y, 0,
 points[4].x, points[4].y, 0,

 // 5 to 6
 points[4].x, points[4].y, 0,
 points[5].x, points[5].y, 0,

 // 6 back to 1
 points[5].x, points[5].y, 0,
 points[0].x, points[0].y, 0,
};

setVertices(asteroidVertices);

}// End method

}// End class

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[313]

Now as you have probably come to expect, we add an array to GameManager to hold
all our asteroids. At the same time, we will declare some variables which will hold
the level the player is currently on, as well as the starting (base) number of asteroids.
Then soon, when we initialize all our asteroids, we will see how we will determine
the number of asteroids that will need to be destroyed to clear a level.

Asteroid [] asteroids;
int numAsteroids;
int numAsteroidsRemaining;
int baseNumAsteroids = 10;
int levelNumber = 1;

Initialize the array in the GameManager constructor:

// For all our asteroids
asteroids = new Asteroid[500];

Initialize the objects themselves in the createObjects method using our previously
declared variables to determine the number of asteroids based on the current level.

// Determine the number of asteroids
gm.numAsteroids = gm.baseNumAsteroids * gm.levelNumber;
// Set how many asteroids need to be destroyed by player
gm.numAsteroidsRemaining = gm.numAsteroids;
// Spawn the asteroids

for (int i = 0; i < gm.numAsteroids * gm.levelNumber; i++) {
 // Create a new asteroid
 // Pass in level number so they can be made
 // appropriately dangerous.
 gm.asteroids[i] = new Asteroid
 (gm.levelNumber, gm.mapWidth, gm.mapHeight);

}

Update them in the update method.

// Update all the asteroids
for (int i = 0; i < gm.numAsteroids; i++) {
 if (gm.asteroids[i].isActive()) {
 gm.asteroids[i].update(fps);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Move and Draw with OpenGL ES 2

[314]

Finally, we can draw all our asteroids in the draw method.

// The bullets
for (int i = 0; i < gm.numBullets; i++) {
 gm.bullets[i].draw(viewportMatrix);
}

for (int i = 0; i < gm.numAsteroids; i++) {
 if (gm.asteroids[i].isActive()) {
 gm.asteroids[i].draw(viewportMatrix);
 }

}

Now, run the game and check out those smooth, 60+ FPS, spinning asteroids.

Now, we need to make it easy to control the ship by adding button graphics, as well
as some other overlay information, with a HUD.

Scores and the HUD
The HUD objects will never be rotated. In addition, they are defined in the
InputController class based on screen coordinates, not the game world or even
Open GL coordinates. Therefore, our GameObject class is not a suitable parent class.

For the sake of simplicity, each of the three HUD classes will have their own draw
method. We will see how we draw them at a consistent size and screen position
using a new viewport matrix.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[315]

Once we have created all three of our HUD classes, we will add all of the object
declarations, initializations, and drawing code.

Adding control buttons
The first HUD object we will make a class for, is a simple button.

I am showing all the imports explicitly, as they do not get
imported automatically. Note that the next two classes will need
these as well. The code is all in the download bundle as usual, if
you wish to just copy and paste it.

Create a new class and call it GameButton, then add the following import statements.
Be sure to state the correct package name based on which chapter's code you are
using or the name you gave your project.

import android.graphics.PointF;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
import static android.opengl.GLES20.GL_FLOAT;
import static android.opengl.GLES20.GL_LINES;
import static android.opengl.GLES20.glDrawArrays;
import static android.opengl.GLES20.glEnableVertexAttribArray;
import static android.opengl.GLES20.glGetAttribLocation;
import static android.opengl.GLES20.glGetUniformLocation;
import static android.opengl.GLES20.glUniform4f;
import static android.opengl.GLES20.glUniformMatrix4fv;
import static android.opengl.GLES20.glUseProgram;
import static android.opengl.Matrix.orthoM;
import static android.opengl.GLES20.glVertexAttribPointer;
import static
com.gamecodeschool.c10asteroids.GLManager.A_POSITION;
import static
com.gamecodeschool.c10asteroids.GLManager.COMPONENTS_PER_VERTEX;
import static
com.gamecodeschool.c10asteroids.GLManager.FLOAT_SIZE;
import static com.gamecodeschool.c10asteroids.GLManager.STRIDE;
import static com.gamecodeschool.c10asteroids.GLManager.U_COLOR;
import static com.gamecodeschool.c10asteroids.GLManager.U_MATRIX;

www.it-ebooks.info

http://www.it-ebooks.info/

Move and Draw with OpenGL ES 2

[316]

First, we declare some members; viewportMatrix into which we will put our new
matrix for the viewport transformation from the InputController class's screen
based coordinates—An int glprogram value, an int numVertices value, and a
FloatBuffer class.

public class GameButton {

 // For button coordinate
 // into a GL space coordinate (-1,-1 to 1,1)
 // for drawing on the screen
 private final float[] viewportMatrix = new float[16];

 // A handle to the GL glProgram -
 // the compiled and linked shaders
 private static int glProgram;

 // How many vertices does it take to make
 // our button
 private int numVertices;

 // This will hold our vertex data that is
 // passed into openGL glProgram
 private FloatBuffer vertices;

The first thing we do in the constructor is make our viewport matrix by calling
orthoM() with the screen height and width as 0,0. This makes OpenGL map a
coordinate range that is identical to the device resolution over the top of the
OpenGL coordinate range.

We then get the coordinates of the passed in button and shrink it down to make it
smaller. Then, we initialize a vertex array as four lines to represent a button. Clearly,
we will need to create a new button object to represent each and every button from
our InputController class.

public GameButton(int top, int left,
 int bottom, int right, GameManager gm){

 //The HUD needs its own viewport
 // notice we set the screen height in pixels as the
 // starting y coordinates because
 // OpenGL is upside down world :-)
 orthoM(viewportMatrix, 0, 0,
 gm.screenWidth, gm.screenHeight, 0, 0, 1f);

 // Shrink the button visuals to make

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[317]

 // them less obtrusive while leaving
 // the screen area they represent the same.
 int width = (right - left) / 2;
 int height = (top - bottom) / 2;
 left = left + width / 2;
 right = right - width / 2;
 top = top - height / 2;
 bottom = bottom + height / 2;

 PointF p1 = new PointF();
 p1.x = left;
 p1.y = top;

 PointF p2 = new PointF();
 p2.x = right;
 p2.y = top;

 PointF p3 = new PointF();
 p3.x = right;
 p3.y = bottom;

 PointF p4 = new PointF();
 p4.x = left;
 p4.y = bottom;

 // Add the four points to an array of vertices
 // This time, because we don't need to animate the border
 // we can just declare the world space coordinates, the
 // same as above.
 float[] modelVertices = new float[]{
 // A line from point 1 to point 2
 p1.x, p1.y, 0,
 p2.x, p2.y, 0,
 // Point 2 to point 3
 p2.x, p2.y, 0,
 p3.x, p3.y, 0,
 // Point 3 to point 4
 p3.x, p3.y, 0,
 p4.x, p4.y, 0,
 // Point 4 to point 1
 p4.x, p4.y, 0,
 p1.x, p1.y, 0
 };

www.it-ebooks.info

http://www.it-ebooks.info/

Move and Draw with OpenGL ES 2

[318]

Now, we duplicate a little of the code from GameObject to prepare ByteBuffer, but
still we use our static GLManager.getGLProgram() to get a handle to a GL program.

 // Store how many vertices and
 // elements there is for future use
 final int ELEMENTS_PER_VERTEX = 3;// x,y,z
 int numElements = modelVertices.length;
 numVertices = numElements/ELEMENTS_PER_VERTEX;

 // Initialize the vertices ByteBuffer object based on the
 // number of vertices in the button and the number of
 // bytes there are in the float type
 vertices = ByteBuffer.allocateDirect(
 numElements
 * FLOAT_SIZE)
 .order(ByteOrder.nativeOrder()).asFloatBuffer();

 // Add the button into the ByteBuffer object
 vertices.put(modelVertices);

 glProgram = GLManager.getGLProgram();

}

Finally, we implement the draw method, which is a simplified version of the draw
method from GameObject. Note that we don't need to mess around with model,
translation, and rotation matrices, and also that we pass a different color to the
fragment shader.

public void draw(){

 // And tell OpenGl to use the glProgram
 glUseProgram(glProgram);

 // Now we have a glProgram we need the locations
 // of our three GLSL variables
 int uMatrixLocation = glGetUniformLocation(glProgram, U_MATRIX);

 int aPositionLocation =
 glGetAttribLocation(glProgram, A_POSITION);

 int uColorLocation = glGetUniformLocation(glProgram, U_COLOR);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[319]

 vertices.position(0);

 glVertexAttribPointer(
 aPositionLocation,
 COMPONENTS_PER_VERTEX,
 GL_FLOAT,
 false,
 STRIDE,
 vertices);

 glEnableVertexAttribArray(aPositionLocation);

 // give the new matrix to OpenGL
 glUniformMatrix4fv(uMatrixLocation, 1, false, viewportMatrix, 0);

 // Assign a different color to the fragment shader
 glUniform4f(uColorLocation, 0.0f, 0.0f, 1.0f, 1.0f);

 // Draw the lines
 // start at the first element of the
 // vertices array and read in all vertices
 glDrawArrays(GL_LINES, 0, numVertices);

}
}// End class

Tally icons
This class is the same as GameButton, except that a tally icon will be a single straight
vertical line; therefore, we only need two vertices.

However, note that we have a parameter in the constructor called nthIcon. It will
be the responsibility of the calling code to let TallyIcon know the total quantity of
already created TallyIcon objects, plus one. Then, the current TallyIcon object
can use the padding variable to position itself appropriately.

www.it-ebooks.info

http://www.it-ebooks.info/

Move and Draw with OpenGL ES 2

[320]

Create a new class called TallyIcon and enter the following code. As we have,
previously, include the static imports as required. Here is the code for all the
declarations and the constructor:

public class TallyIcon {

 // For button coordinate
 // into a GL space coordinate (-1,-1 to 1,1)
 // for drawing on the screen
 private final float[] viewportMatrix = new float[16];

 // A handle to the GL glProgram -
 // the compiled and linked shaders
 private static int glProgram;

 // How many vertices does it take to make
 // our button
 private int numVertices;

 // This will hold our vertex data that is
 // passed into openGL glProgram
 //private final FloatBuffer vertices;
 private FloatBuffer vertices;

 public TallyIcon(GameManager gm, int nthIcon){

 // The HUD needs its own viewport
 // notice we set the screen height in pixels as the
 // starting y coordinates because
 // OpenGL is upside down world :-)
 orthoM(viewportMatrix, 0, 0,
 gm.screenWidth, gm.screenHeight, 0, 0f, 1f);

 float padding = gm.screenWidth / 160;
 float iconHeight = gm.screenHeight / 15;
 float iconWidth = 1; // square icons
 float startX = 10 + (padding + iconWidth)* nthIcon;
 float startY = iconHeight * 2 + padding;

 PointF p1 = new PointF();
 p1.x = startX;
 p1.y = startY;

 PointF p2 = new PointF();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[321]

 p2.x = startX;
 p2.y = startY - iconHeight;

 // Add the four points to an array of vertices
 // This time, because we don't need to animate the border
 // we can just declare the world space coordinates, the
 // same as above.
 float[] modelVertices = new float[]{
 // A line from point 1 to point 2
 p1.x, p1.y, 0,
 p2.x, p2.y, 0,

 };

 // Store how many vertices and
 //elements there is for future use
 final int ELEMENTS_PER_VERTEX = 3;// x,y,z
 int numElements = modelVertices.length;
 numVertices = numElements/ELEMENTS_PER_VERTEX;

 // Initialize the vertices ByteBuffer object based on the
 // number of vertices in the button and the number of
 // bytes there are in the float type
 vertices = ByteBuffer.allocateDirect(
 numElements
 * FLOAT_SIZE)
 .order(ByteOrder.nativeOrder()).asFloatBuffer();

 // Add the button into the ByteBuffer object
 vertices.put(modelVertices);

 glProgram = GLManager.getGLProgram();
 }

This is the draw method which is probably looking quite familiar by now.

 public void draw(){

 // And tell OpenGl to use the glProgram
 glUseProgram(glProgram);

 // Now we have a glProgram we need the locations

www.it-ebooks.info

http://www.it-ebooks.info/

Move and Draw with OpenGL ES 2

[322]

 // of our three GLSL variables
 int uMatrixLocation =
 glGetUniformLocation(glProgram, U_MATRIX);

 int aPositionLocation =
 glGetAttribLocation(glProgram, A_POSITION);

 int uColorLocation =
 glGetUniformLocation(glProgram, U_COLOR);

 vertices.position(0);

 glVertexAttribPointer(
 aPositionLocation,
 COMPONENTS_PER_VERTEX,
 GL_FLOAT,
 false,
 STRIDE,
 vertices);

 glEnableVertexAttribArray(aPositionLocation);

 // Just give the passed in matrix to OpenGL
 glUniformMatrix4fv(uMatrixLocation, 1,
 false, viewportMatrix, 0);

 // Assign a color to the fragment shader
 glUniform4f(uColorLocation, 1.0f, 1.0f, 0.0f, 1.0f);

 // Draw the lines
 // start at the first element of the vertices array and read
 in all vertices
 glDrawArrays(GL_LINES, 0, numVertices);
 }

Now for the final HUD element.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[323]

Life icons
Our last icon will be a kind of mini-ship to indicate how many lives the player
has remaining.

We will construct a triangle shape out of lines to create a nice hollow effect. Note that
the LifeIcon constructor also uses an nthIcon element to control the padding and
on screen position.

Create a new class called LifeIcon and enter the following code, remembering all
the imports that will not auto-import. Here are the declarations and the constructor:

public class LifeIcon {

 // Remember the static import for GLManager

 // For button coordinate
 // into a GL space coordinate (-1,-1 to 1,1)
 // for drawing on the screen
 private final float[] viewportMatrix = new float[16];

 // A handle to the GL glProgram -
 // the compiled and linked shaders
 private static int glProgram;

 // Each of the above constants also has a matching int
 // which will represent its location in the open GL glProgram
 // In GameButton they are declared as local variables

 // How many vertices does it take to make
 // our button
 private int numVertices;

 // This will hold our vertex data that is
 // passed into openGL glProgram
 //private final FloatBuffer vertices;
 private FloatBuffer vertices;

 public LifeIcon(GameManager gm, int nthIcon){

 // The HUD needs its own viewport
 // notice we set the screen height in pixels as the
 // starting y coordinates because

www.it-ebooks.info

http://www.it-ebooks.info/

Move and Draw with OpenGL ES 2

[324]

 // OpenGL is upside down world :-)
 orthoM(viewportMatrix, 0, 0,
 gm.screenWidth, gm.screenHeight, 0, 0f, 1f);

 float padding = gm.screenWidth / 160;
 float iconHeight = gm.screenHeight / 15;
 float iconWidth = gm.screenWidth / 30;
 float startX = 10 + (padding + iconWidth)* nthIcon;
 float startY = iconHeight;

 PointF p1 = new PointF();
 p1.x = startX;
 p1.y = startY;

 PointF p2 = new PointF();
 p2.x = startX + iconWidth;
 p2.y = startY;

 PointF p3 = new PointF();
 p3.x = startX + iconWidth/2;
 p3.y = startY - iconHeight;

 // Add the four points to an array of vertices
 // This time, because we don't need to animate the border
 // we can just declare the world space coordinates, the
 // same as above.
 float[] modelVertices = new float[]{
 // A line from point 1 to point 2
 p1.x, p1.y, 0,
 p2.x, p2.y, 0,
 // Point 2 to point 3
 p2.x, p2.y, 0,
 p3.x, p3.y, 0,
 // Point 3 to point 1
 p3.x, p3.y, 0,
 p1.x, p1.y, 0,

 };

 // Store how many vertices and elements there is for future
 // use
 final int ELEMENTS_PER_VERTEX = 3;// x,y,z

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[325]

 int numElements = modelVertices.length;
 numVertices = numElements/ELEMENTS_PER_VERTEX;

 // Initialize the vertices ByteBuffer object based on the
 // number of vertices in the button and the number of
 // bytes there are in the float type
 vertices = ByteBuffer.allocateDirect(
 numElements
 * FLOAT_SIZE)
 .order(ByteOrder.nativeOrder()).asFloatBuffer();

 // Add the button into the ByteBuffer object
 vertices.put(modelVertices);

 glProgram = GLManager.getGLProgram();
 }

Here is the draw method of the LifeIcon class:

 public void draw(){

 // And tell OpenGl to use the glProgram
 glUseProgram(glProgram);

 // Now we have a glProgram we need the locations
 // of our three GLSL variables
 int uMatrixLocation = glGetUniformLocation
 (glProgram, U_MATRIX);
 int aPositionLocation = glGetAttribLocation
 (glProgram, A_POSITION);
 int uColorLocation = glGetUniformLocation
 (glProgram, U_COLOR);

 vertices.position(0);

 glVertexAttribPointer(
 aPositionLocation,
 COMPONENTS_PER_VERTEX,
 GL_FLOAT,
 false,
 STRIDE,
 vertices);

 glEnableVertexAttribArray(aPositionLocation);

www.it-ebooks.info

http://www.it-ebooks.info/

Move and Draw with OpenGL ES 2

[326]

 // Just give the passed in matrix to OpenGL
 glUniformMatrix4fv(uMatrixLocation, 1,
 false, viewportMatrix, 0);
 // Assign a color to the fragment shader
 glUniform4f(uColorLocation, 1.0f,
 1.0f, 0.0f, 1.0f);
 // Draw the lines
 // start at the first element of
 // the vertices array and read in all vertices
 glDrawArrays(GL_LINES, 0, numVertices);
 }

}

We have our three HUD classes, and we can draw them to the screen.

Declaring, initializing, and drawing the HUD objects
We will declare, initialize, and draw our HUD objects just like all the GameObject
classes. However, note that, as expected, we don't pass a viewport matrix to the draw
method because the HUD classes provide their own.

Add these members to GameManager:

TallyIcon[] tallyIcons;
int numLives = 3;
LifeIcon[] lifeIcons;

As we did with the asteroids array, initialize tallyIcons and lifeIcons in the
GameManager constructor:

lifeIcons = new LifeIcon[50];
tallyIcons = new TallyIcon[500];

Add a new member array to the AsteroidsRenderer class:

// This will hold our game buttons
private final GameButton[] gameButtons = new GameButton[5];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

[327]

Add this code to create objects of all our new HUD classes. Add it to the
createObjects method just before the closing curly brace:

// Now for the HUD objects
// First the life icons
for(int i = 0; i < gm.numLives; i++) {
 // Notice we send in which icon this represents
 // from left to right so padding and positioning is correct.
 gm.lifeIcons[i] = new LifeIcon(gm, i);
}

// Now the tally icons (1 at the start)
for(int i = 0; i < gm.numAsteroidsRemaining; i++) {
 // Notice we send in which icon this represents
 // from left to right so padding and positioning is correct.
 gm.tallyIcons[i] = new TallyIcon(gm, i);
}

// Now the buttons
ArrayList<Rect> buttonsToDraw = ic.getButtons();
int i = 0;
for (Rect rect : buttonsToDraw) {
 gameButtons[i] = new GameButton(rect.top, rect.left,
 rect.bottom, rect.right, gm);

 i++;

}

Now we can draw our HUD based on the number of lives remaining and the number
of asteroids left before the next level. Add this code to the end of the draw method:

// the buttons
for (int i = 0; i < gameButtons.length; i++) {
 gameButtons[i].draw();
}

// Draw the life icons
for(int i = 0; i < gm.numLives; i++) {
 // Notice we send in which icon this represents
 // from left to right so padding and positioning is correct.
 gm.lifeIcons[i].draw();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Move and Draw with OpenGL ES 2

[328]

// Draw the level icons
for(int i = 0; i < gm.numAsteroidsRemaining; i++) {
 // Notice we send in which icon this represents
 // from left to right so padding and positioning is correct.
 gm.tallyIcons[i].draw();
}

You can now fly around and admire your new HUD.

Obviously, if we are going to make any use of our lives and asteroid tally indicators,
then we first need to be able to shoot asteroids as well as detect them when the ship
gets hit.

Summary
We achieved lots in this chapter, and indeed it would be simple to quickly add more
game objects. Perhaps, an occasional UFO like in the original arcade classic.

In the next chapter we will use what we learned in previous projects to set up
collision detection and finish off the game. However, a game with precise, clean,
smooth moving lines deserves much more accurate collision detection than we used
so far.

So, we will concentrate solely on implementing precise, efficient collision detection
that will make our Asteroids simulator complete.

www.it-ebooks.info

http://www.it-ebooks.info/

[329]

Things That Go
Bump – Part II

The collision detection in this game is much more complex than the previous two.
For this reason, the code will be quite heavily commented. Sometimes the comments
will explain things in a bit more detail or in a slightly different way.

However, that doesn't mean it needs to be hard work. What we need to do is take a
moment to consider a strategy that will work for us.

Hopefully, this approach will mean that by the end of the chapter, our collision
detection solutions will appear straightforward.

Planning for collision detection
What we are trying to achieve can be put into the following two categories:

• What we want for the border:
 ° Asteroids, bullets, and the ship need to know when they have

collided with the border
 ° Asteroids should reverse and head back into the game area when

they touch the border
 ° A bullet should reset itself at the border
 ° The ship should subtract a life and then respawn in the centre

www.it-ebooks.info

http://www.it-ebooks.info/

Things That Go Bump – Part II

[330]

• What we want for the asteroids. We need to know and respond when:

 ° The ship touches an asteroid
 ° When a bullet touches an asteroid
 ° As in the original Asteroids game, we will not respond to asteroids

bumping into each other

Although we will not be detecting an asteroid on asteroid collisions, you will see
that when our collision detection nears completion, achieving asteroid on asteroid
collision detection will not present much of an extra challenge. However, it will put
extra strain on the device's CPU.

We know that we have object on border collisions to detect and object on asteroid
collisions to detect.

Colliding with the border
It may sound obvious, but the border is simply four static straight lines. This makes a
border collision a different problem to an asteroid collision.

All of the objects that we are interested in have vertices (or one vertex in the
case of a bullet). This may at first suggest that we can simply compute the world
location of each vertex from the model space and the centre of the object stored in
worldLocation. We can, but this overlooks the fact that the asteroids and the ship
rotate, which constantly causes a variation in the actual world locations of all the
vertices.

We will need to translate and rotate the model space vertices, and then test if any of
them have touched the border. We can do this in the object's update method for each
frame, but we only need the rotated coordinates occasionally, when the object is very
close to the border.

The first phase of border collision detection
This suggests that a preliminary check, a first phase of collision detection, is more
efficient. It implies that the translation and rotation of the vertices will need to take
place outside of the object itself.

What we will do is use a simple rectangle intersect check based on the centre of
the object and its width and height. If this cheap method returns a hit, we will then
rotate and translate each vertex and check their real-world coordinates individually
against the location of the border.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[331]

Once the rotated game world locations of the vertices are calculated, the collision
detection is simple.

if (any point falls outside the border){collision has occurred}

As we will see, a two-stage solution is appropriate for the asteroid detection as well.
Also, rotation and translation is involved but it is far less important.

Colliding with an asteroid
Testing for collision with an asteroid is similar in some respects. We need to find out
if any single vertex from the ship or a bullet crosses into the space contained by the
vertices of the asteroid.

The first problem is that the asteroid is not only a moving target, but also a rotating
one. We will not only have to rotate and translate all the vertices of the objects, but
the asteroids as well.

We also need to calculate the line made between each pair of vertices on the asteroid.
Fortunately, at this point, we can fall back on a clever algorithm devised and
refined by mathematicians far greater than myself. We will use the crossing number
algorithm. This is how it works.

The crossing number
We compute the line made by a pair of vertices and use the crossing number
algorithm to see if a particular vertex from the object being tested crossed that line. If
it did, we increment a variable from 0 to 1.

We test the same point against each and every line made by each vertex pair from
an asteroid, incrementing our variable each time it does. If our variable is odd after
testing the vertex against every line with the crossing number algorithm, we have a
hit. If it is even, no collision has occurred.

Of course if no collision has occurred, we must proceed to test each and every vertex
from the object being tested against each and every line formed out of the vertex
pairs on the asteroid.

www.it-ebooks.info

http://www.it-ebooks.info/

Things That Go Bump – Part II

[332]

Here is a visual representation of the crossing number algorithm in action.

Of course with all these complex calculations going on, we will definitely want to do
a simple first phase test to see if it is likely there has been a collision before doing the
complex tests.

The first phase and overview of asteroid collision
detection
The radius overlap test is quite appropriate when testing a single vertex, such as a
bullet, a spinning triangle like a ship, or a rotating asteroid.

This is an overview of the whole process we will use for testing the collisions against
asteroids:

1. Is the radius of the object being tested overlapped with the radius of an
asteroid?

2. If yes, has the first vertex of the object crossed the first line of the asteroid?
3. If yes, crossingNumber ++.
4. Repeat step 2 with each line on the object.
5. If crossingNumber is odd, return true to calling code because a collision has

occurred.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[333]

6. If crossingNumber is even, no collision has occurred (yet) repeat steps 2, 3,
and 4 with the next vertex of the object being tested.

7. If all vertices tested and we reached here then no collision has occurred.

We will set up a collision detection class called CD with two static methods. The
detect method will test for collisions with asteroids and be called for each bullet
and ship against each and every asteroid in each frame.

The contain method will check for collisions with every asteroid, bullet, and ship
against the border.

Doing the calculations outside the objects themselves means that we will need a
whole bunch of data for the objects we will be testing, and the ones made accessible
to the new CD class's methods.

The CollisionPackage class
We know that we need a certain set of data to carry out detections properly. This
next class will hold all the data that our collision detection class's methods will need
in order to do its job, and every object that we need to detect collisions for will have
one.

When the time comes to rotate all the points to their real-world location, our collision
package will need to know which way the object is facing. We have a float called
facingAngle.

We will obviously need a copy of the model space vertices. As with the rotated
location, we will not go through the trouble of updating every frame and will do so
only after the first phase of collision detection shows that a collision is likely.

We will also hold the precomputed value for the length of the array that holds these
vertices. It can potentially save time in the collision detection process.

Therefore, we will also need the world coordinates of the object. This, we will update
every frame.

Each object will have a precomputed radius variable, which is the size of the object
from its centre to its furthest vertex. This will be used in our detect method for
radius overlapping, phase one detection.

We will also have a couple of PointF objects, currentPoint, and currentPoint2,
which are just handy objects that will avoid us potentially summoning the garbage
collector during an intensive part of the two collision detection methods.

www.it-ebooks.info

http://www.it-ebooks.info/

Things That Go Bump – Part II

[334]

Create a new class, call it CollisionPackage, and implement the members we have
just discussed:

// All objects which can collide have a collision package.
// Asteroids, ship, bullets. The structure seems like slight
// overkill for bullets but it keeps the code generic,
// and the use of vertexListLength means there isn't any
// actual speed overhead. Also if we wanted line, triangle or
// even spinning bullets the code wouldn't need to change.

public class CollisionPackage {

 // All the members are public to avoid multiple calls
 // to getters and setters.

 // The facing angle allows us to calculate the
 // current world coordinates of each vertex using
 // the model-space coordinates in vertexList.
 public float facingAngle;

 // The model-space coordinates
 public PointF[] vertexList;

 /*
 The number of vertices in vertexList
 is kept in this next int because it is pre-calculated
 and we can use it in our loops instead of
 continually calling vertexList.length.
 */
 public int vertexListLength;

 // Where is the centre of the object?
 public PointF worldLocation;

 /*
 This next float will be used to detect if the circle shaped
 hitboxes collide. It represents the furthest point
 from the centre of any given object.
 Each object will set this slightly differently.
 The ship will use height/2 an asteroid will use 25
 To allow for a max length rotated coordinate.
 */
 public float radius;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[335]

 // A couple of points to store results and avoid creating new
 // objects during intensive collision detection
 public PointF currentPoint = new PointF();
 public PointF currentPoint2 = new PointF();

Next, we have a simple constructor that will receive all the necessary data from each
object at the end of each object's constructor. Implement the CollisionPackage
constructor as shown here:

public CollisionPackage(PointF[] vertexList, PointF worldLocation,
 float radius, float facingAngle){

 vertexListLength = vertexList.length;
 this.vertexList = new PointF[vertexListLength];
 // Make a copy of the array

 for (int i = 0; i < vertexListLength; i++) {
 this.vertexList[i] = new PointF();
 this.vertexList[i].x = vertexList[i].x;
 this.vertexList[i].y = vertexList[i].y;
 }

 this.worldLocation = new PointF();
 this.worldLocation = worldLocation;

 this.radius = radius;

 this.facingAngle = facingAngle;

 }

}

That's all the data we need for advanced collision detection.

www.it-ebooks.info

http://www.it-ebooks.info/

Things That Go Bump – Part II

[336]

Adding collision packages to the objects and
making them accessible
Now, we have our CollisionPackage class. We will see how to add one to each
object we need to monitor.

Adding a collision package to the Bullet class
Open up the Bullet class, and we will see how to make use of our
CollisionPackage constructor on the simplest case (just a point). Add a new
member for the collision package.

Add a new member of type CollisionPackage to the Bullet class:

CollisionPackage cp;

Now, we create a structure to pass in to our CollisionPackage constructor and
initialize the collision package. Note that we send in a single element array with the
model space coordinates that will be 0,0,0. Then, we send in the world location, 1, for
the radius and the angle the bullet is facing. Enter the following code at the end of
the Bullet class's constructor:

// Initialize the collision package
// (the object space vertex list, x any world location
// the largest possible radius, facingAngle)

// First, build a one element array
PointF point = new PointF(0,0);
PointF[] points = new PointF[1];
points[0] = point;

// 1.0f is an approximate representation
//of the size of a bullet
cp = new CollisionPackage(points, getWorldLocation(),
1.0f, getFacingAngle());

Finally for the Bullet class, we update the collision package in each frame by adding
this code to the very end of the Bullet class's update method:

 move(fps);

 // Update the collision package
 cp.facingAngle = getFacingAngle();
 cp.worldLocation = getWorldLocation();

Now, our bullets are all set for detection.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[337]

Adding a collision package to the SpaceShip class
Open up the SpaceShip class and add these members. We will then see how to use
them in the SpaceShip constructor:

CollisionPackage cp;

// Next, a 2d representation using PointF of
// the vertices. Used to build shipVertices
// and to pass to the CollisionPackage constructor
PointF[] points;

Here, we do something extra compared to the Bullet class. We add three more
model space coordinates. OpenGL will not know about these and doesn't need them.
They are positioned in the middle of each of the three lines, which make the ship. We
do this to make it harder for a vertex of an asteroid to drift inside the ship without
a vertex of the ship being inside the asteroid. This is a visual representation of the
problem that we are solving. The ships vertices are heavily emphasized to highlight
the problem. Refer to the following diagram:

We can completely solve this problem by testing all the asteroids vertices against all
of the ship's lines as well as what we are planning to do; test all the ship's vertices
against all the asteroids lines. However, just adding a few extra points to the ship
does produce near-perfect detection as shown next:

www.it-ebooks.info

http://www.it-ebooks.info/

Things That Go Bump – Part II

[338]

Now, right after the call to setVertices() in the SpaceShip constructor implement
the code we just discussed:

setVertices(shipVertices);

// Initialize the collision package
// (the object space vertex list, x any world location
// the largest possible radius, facingAngle)

points = new PointF[6];
points[0] = new PointF(- halfW, - halfL);

points[2] = new PointF(halfW, - halfL);
points[4] = new PointF(0, 0 + halfL);

// To make collision detection more accurate we will define some
// more points on the midpoints of all our sides.
// It is possible that the point of an asteroid will pass through
// the side of the ship and we do not test for this!
// We only test for the point of a ship
// passing through the side of an asteroid!!
// This is computationally cheaper than running both tests.
// Although not as accurate we will see it is very close.
// We can think of this visually as
// adding extra sensors on the sides of our ship
// Here we use an equation to find the midpoint
// of a line which you can find an explanation of
// on most good high school math web sites.

points[1] = new PointF(points[0].x +
 points[2].x/2,(points[0].y + points[2].y)/2);

points[3] = new PointF((points[2].x + points[4].x)/2,
 (points[2].y + points[4].y)/2);

points[5] = new PointF((points[4].x + points[0].x)/2,
 (points[4].y + points[0].y)/2);

cp = new CollisionPackage(points, getWorldLocation(),
 length/2, getFacingAngle());

}// End SpaceShip constructor

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[339]

Next as we did for the Bullet class, we synchronize the collision package each frame
in the SpaceShip class's update method. We do this at the very end of the method
after the call to move() has updated the ship's coordinates.

move(fps);

 // Update the collision package
 cp.facingAngle = getFacingAngle();
 cp.worldLocation = getWorldLocation();

}// End SpaceShip update()

Finally, we will add a collision package to the asteroids.

Adding a collision package to the Asteroid class
Open up the Asteroid class and add a CollisionPackage member:

CollisionPackage cp;

At the end of the Asteroid constructor, just after the call to generatePoints(),
we initialize the CollisionPackage object:

// Define a random asteroid shape
// Then call the parent setVertices()
generatePoints();

// Initialize the collision package
// (the object space vertex list, x any world location
// the largest possible radius, facingAngle)
cp = new CollisionPackage

 (points, getWorldLocation(), 25, getFacingAngle());

Next, we add a helper method that reverses the direction of travel and bounces the
asteroid back by a few pixels when a collision has been detected. We will call this
method when we detect a collision with the border. Add the bounce method to the
Asteroid class:

public void bounce(){

 // Reverse the travelling angle
 if(getTravellingAngle() >= 180){
 setTravellingAngle(getTravellingAngle()-180);
 }else{
 setTravellingAngle(getTravellingAngle() + 180);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Things That Go Bump – Part II

[340]

 // Reverse velocity because occasionally they get stuck
 setWorldLocation((getWorldLocation().x + -getxVelocity()/3),
 (getWorldLocation().y + -getyVelocity()/3));

 // Speed up by 10%
 setSpeed(getSpeed() * 1.1f);

 // Not too fast though
 if(getSpeed() > getMaxSpeed()){
 setSpeed(getMaxSpeed());

}

As with the SpaceShip and Bullet classes, we will update the collision package in
the update method just after the call to move at the very end of the update method:

move(fps);

// Update the collision package
cp.facingAngle = getFacingAngle();
cp.worldLocation = getWorldLocation();

}

Now, we need to do something that we didn't need to do for the other classes.
Our crossing number algorithm uses lines not vertices, so we need to make a line
out of the last vertex by joining it with the first. We didn't need to do this with the
SpaceShip class because of the way our collision data code worked. The collision
data code will test the points of the bullets and ship against the lines of the asteroids.
Not the other way around.

Here is the extra code to add to the seventh point in the generatePoints method.
In the following code, I have included the existing code on either side of the new
highlighted code:

// left below 0
points[5] = new PointF();
i = -(r.nextInt(14)+11);
points[5].x = i;
i = -(r.nextInt(12)+1);

points[5].y = i;

// We add on an extra point that we won't use in asteroidVertices[].
// The point is the same as the first.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[341]

// This is because the last vertex
// links back to the first to create a line.
// This line will need to be
// used in calculations when we do our collision detection.

// Here is the extra vertex- same as the first.
points[6] = new PointF();
points[6].x = points[0].x;
points[6].x = points[0].x;

// Now use these points to draw our asteroid
float[] asteroidVertices = new float[]{
// First point to second point
points[0].x, points[0].y, 0,
points[1].x, points[1].y, 0,

Now, we can talk about building the collision detection class itself.

The CD class outline
We will now implement the first phase of collision detection. As discussed, the
algorithms we will use are computationally expensive, and we only want to use
them when there is a realistic chance of a collision.

Therefore, we will check each bullet and the ship against every asteroid using the
radius overlapping method discussed in Chapter 3, Tappy Defender – Taking Flight.
We will check the asteroids, ship, and bullets against the border using a simplified
rectangle intersection method.

After the next two sections, you will actually be able to play the game, but you will
see that the basic collision detection that we have used so far is not satisfying enough
for this type of game.

These first checks will decide whether we then move on to do the more accurate and
computationally expensive checks.

We will implement these second phase checks in the sections Precise collision detection
with the border and Precise collision detection with an asteroid, which will use the more
advanced algorithms and put the data in our collision packages to full use.

To get started, create a new class and call it CD. Add a member PointF object and
initialize it. We will use it to avoid creating new objects during the critical parts of
the code.

private static PointF rotatedPoint = new PointF();

Now, let's discuss the methods.

www.it-ebooks.info

http://www.it-ebooks.info/

Things That Go Bump – Part II

[342]

Implementing radius overlapping for asteroids
and ships
Let's add our first method to the CD class, to detect collisions between bullets
and asteroids as well as the ship and asteroids. As we discussed, we are only
implementing the first part of this method for now. Here is the implementation
of the radius overlapping code.

The code works by making a hypothetical triangle with a missing side, and then
using Pythagoras' theorem to calculate the missing side that is the distance between
the centre points of the two objects. If the combined radii of the two objects is greater
than the distance between the two object centers, we have an overlap.

Add the detect method with the radius overlapping code. Note that we return true
if the radii overlap. This one line of code will be replaced with the more accurate
detection later in this chapter.

public static boolean detect(CollisionPackage cp1,
 CollisionPackage cp2) {

 boolean collided = false;

 // Check circle collision between the two objects

 // Get the distance of the two objects from
 // the centre of the circles on the x axis
 float distanceX = (cp1.worldLocation.x)
 - (cp2.worldLocation.x);

 // Get the distance of the two objects from
 // the centre of the circles on the y axis
 float distanceY = (cp1.worldLocation.y)
 - (cp2.worldLocation.y);

 // Calculate the distance between the center of each circle
 double distance = Math.sqrt
 (distanceX * distanceX + distanceY * distanceY);

 // Finally see if the two circles overlap
 // If they do it is worth doing the more intensive
 // and accurate check.
 if (distance < cp1.radius + cp2.radius) {

 // Log.e("Circle collision:","true");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[343]

 // todo Eventually we will add the
 // more accurate code here
 // todo and delete the line below.

 collided = true;
 }

 return collided;
 }

Now, let's discuss the border.

Implementing rectangle intersection for the border
We will see if any asteroids, bullets, or the ship need containing within the border.
As discussed, we will carry out a simple rectangle intersect test and return true if
detected. Later, we will delete the return true and add the more sophisticated code.

Implement the contain method as shown next:

// Check if anything hits the border
public static boolean contain(float mapWidth, float mapHeight,
 CollisionPackage cp) {

 boolean possibleCollision = false;

 // Check if any corner of a virtual rectangle
 // around the centre of the object is out of bounds.
 // Rectangle is best because we are testing
 // against straight sides (the border)
 // If it is we have a possible collision.

 if (cp.worldLocation.x - cp.radius < 0) {
 possibleCollision = true;
 } else if (cp.worldLocation.x + cp.radius > mapWidth) {
 possibleCollision = true;
 } else if (cp.worldLocation.y - cp.radius < 0) {
 possibleCollision = true;
 } else if (cp.worldLocation.y + cp.radius > mapHeight) {
 possibleCollision = true;
 }

 if (possibleCollision) {
 // todo For now we return true
 return true;

www.it-ebooks.info

http://www.it-ebooks.info/

Things That Go Bump – Part II

[344]

 }

 return false; // No collision
}

Now, we have two methods that we just need to call them on all the appropriate
object combinations.

Performing the checks
We are really close to being able to play our game, albeit with simplified collision
detection. First add some methods that handle what happens when certain collisions
are detected and then see how we actually use our CD class.

Helper methods
First of all, we need a couple of helper methods to respond, when we detect various
types of collisions.

We need a method for when the ship is destroyed and a method for when an asteroid
is destroyed. The next two subsections cover this.

Destroying a ship
The death of a ship can be detected in two places, so it makes sense to add a method
to handle the events that follow. In this next method, we reset the ship's location to
the center of the map, play a sound, and decrement numLives.

If numLives is equal to zero, set levelNumber back to one, numLives to three, call
createObjects() to redraw a level, pause the game, and then play a sound suitable
to let the player know that he is starting again.

Now, add the lifeLost method to the AsteroidsRenderer class:

public void lifeLost(){
 // Reset the ship to the center
 gm.ship.setWorldLocation(gm.mapWidth/2, gm.mapHeight/2);
 // Play a sound
 sm.playSound("shipexplode");

 // Deduct a life
 gm.numLives = gm.numLives -1;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[345]

 if(gm.numLives == 0){
 gm.levelNumber = 1;
 gm.numLives = 3;
 createObjects();
 gm.switchPlayingStatus();
 sm.playSound("gameover");
 }
 }

We will handle what happens when an asteroid dies.

Destroying an asteroid
This method will be called when the ship or a bullet hits an asteroid. First, we set the
asteroid that triggered the collision to setActive(false). It will not be drawn or
updated any more.

Next, we play a sound and decrement numAsteroidsRemaining. Finally if
numAsteroidsRemaining is equal to zero, the player has cleared an entire level. In
that case, we increment levelNumber and numLives, play a victorious sound, and
start a harder level by calling createObjects().

Now, add the destroyAsteroid() method to the AsteroidsRenderer class:

public void destroyAsteroid(int asteroidIndex){

 gm.asteroids[asteroidIndex].setActive(false);
 // Play a sound
 sm.playSound("explode");
 // Reduce the number of active asteroids
 gm.numAsteroidsRemaining --;

 // Has the player cleared them all?
 if(gm.numAsteroidsRemaining == 0){
 // Play a victory sound

 // Increment the level number
 gm.levelNumber ++;

 // Extra life
 gm.numLives ++;

 sm.playSound("nextlevel");
 // Respawn everything
 // With more asteroids

www.it-ebooks.info

http://www.it-ebooks.info/

Things That Go Bump – Part II

[346]

 createObjects();

}
}
}// End class

We can now call our new CD class's static methods and respond when we get a
collision.

Testing for collisions in update()
First, we will check to see if the ship needs containing. We simply call CD.contain()
with the mapWidth, mapHeight, and the ship's collision package. If there is a collision,
the code calls lifeLost().

Add the collision detection code after all the code that updates the objects in the
update method:

// End of all updates!!

// All objects are in their new locations
// Start collision detection

// Check if the ship needs containing
if (CD.contain(gm.mapWidth, gm.mapHeight, gm.ship.cp)) {

 lifeLost();

}

This is the code that detects if any of the asteroids are attempting to leave the
asteroid simulator. It works exactly the same way as the previous block of code
except that we loop through each asteroid, check if it is active, and call bounce
on the asteroid if we detect a collision.

// Check if an asteroid needs containing
for (int i = 0; i < gm.numAsteroids; i++) {
 if (gm.asteroids[i].isActive()) {
 if (CD.contain(gm.mapWidth, gm.mapHeight,
 gm.asteroids[i].cp)) {

 // Bounce the asteroid back into the game
 gm.asteroids[i].bounce();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[347]

 // Play a sound
 sm.playSound("blip");

 }
 }

}

The code for the bullets looks a little more complicated, but it isn't really. The call
to CD.contain() is identical, and we do so for each bullet. However, some last
minute balancing of the game play is necessary for the bullet to be reset as it left the
viewport (if that was before the border), because otherwise the ship can just spin
round and destroy the asteroids from a great distance.

Enter the code to detect bullet collisions with the border and the edge of the viewport:

// Check if bullet needs containing
// But first see if the bullet is out of sight
// If it is reset it to make game harder
for (int i = 0; i < gm.numBullets; i++) {

 // Is the bullet in flight?
 if (gm.bullets[i].isInFlight()) {

 // Comment the next block to make the game easier!!!
 // It will allow the bullets to go all the way from
 // ship to border without being reset.
 // These lines reset the bullet when
 // shortly after they leave the players view.
 // This forces the player to go 'hunting' for the
 // asteroids instead of spinning round spamming the
 // fire button...
 // This code would be better with a viewport.clip() method
 // like in project 2 but seems a bit excessive just for these
 // few 15ish lines of code.

 // Start comment out to make easier
 handyPointF = gm.bullets[i].getWorldLocation();
 handyPointF2 = gm.ship.getWorldLocation();

 if(handyPointF.x > handyPointF2.x + gm.metresToShowX / 2){
 // Reset the bullet
 gm.bullets[i].resetBullet(gm.ship.getWorldLocation());

www.it-ebooks.info

http://www.it-ebooks.info/

Things That Go Bump – Part II

[348]

 }else
 if(handyPointF.x < handyPointF2.x - gm.metresToShowX / 2){
 // Reset the bullet
 gm.bullets[i].resetBullet(gm.ship.getWorldLocation());

 }else
 if(handyPointF.y > handyPointF2.y + gm.metresToShowY/ 2){
 // Reset the bullet
 gm.bullets[i].resetBullet(gm.ship.getWorldLocation());
 }else
 if(handyPointF.y < handyPointF2.y - gm.metresToShowY / 2){
 // Reset the bullet
 gm.bullets[i].resetBullet(gm.ship.getWorldLocation());
 }
 // End comment out to make easier

 // Does bullet need containing?
 if (CD.contain(gm.mapWidth, gm.mapHeight,
 gm.bullets[i].cp)) {

 // Reset the bullet
 gm.bullets[i].resetBullet
 (gm.ship.getWorldLocation());
 // Play a sound
 sm.playSound("ricochet");
 }

 }

}

You can run the game now and see how the CD.contain() method does a fairly
good job of keeping everything within the asteroid simulator.

We will call our detect method to see if anything is bumping into an asteroid.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[349]

First, check the bullets. Note that we do a preliminary check to make sure the bullet
is in flight, and the asteroid is active before we trouble our CD.detect method. Then,
we just pass in the two collision packages and CD.detect does the rest. If a bullet
collides with the border, we call resetBullet() on the appropriate bullet.

// Now we see if anything has hit an asteroid

// Check collisions between asteroids and bullets
// Loop through each bullet and asteroid in turn

for (int bulletNum = 0; bulletNum < gm.numBullets; bulletNum++) {
 for (int asteroidNum = 0; asteroidNum < gm.numAsteroids;
 asteroidNum++) {

 // Check that the current bullet is in flight
 // and the current asteroid is
 // active before proceeding
 if (gm.bullets[bulletNum].isInFlight() &&
 gm.asteroids[asteroidNum].isActive())

 // Perform the collision checks by
 // passing in the collision packages

 // A Bullet only has one vertex.
 // Our collision detection works on vertex pairs

 if (CD.detect(gm.bullets[bulletNum].cp,
 gm.asteroids[asteroidNum].cp)) {

 // If we get a hit...
 destroyAsteroid(asteroidNum);

 // Reset the bullet
 gm.bullets[bulletNum].resetBullet
 (gm.ship.getWorldLocation());
 }

 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Things That Go Bump – Part II

[350]

Now, we test for the ship. If a collision is detected, we call destroyAsteroid()
followed by lifeLost().

// Check collisions between asteroids and ship
// Loop through each asteroid in turn

for (int asteroidNum = 0; asteroidNum < gm.numAsteroids;
 asteroidNum++) {

 // Is the current asteroid active before proceeding
 if (gm.asteroids[asteroidNum].isActive()) {

 // Perform the collision checks by
 // passing in the collision packages
 if (CD.detect(gm.ship.cp, gm.asteroids[asteroidNum].cp)) {

 // hit!
 destroyAsteroid(asteroidNum);
 lifeLost();
 }
 }
}

At this point, you can play the game and our rudimentary collision detection will
work. However, fly too close to an asteroid, and you will lose a life without touching
it or merely shoot a bullet close and the asteroid is gone. We need to be able to skim
the surface of the border or asteroid and only get a hit when a point actually crosses
into the exact space of another object.

Precise collision detection with the
border
To upgrade our detect method, we need to replace the return statement in the
if(possibleCollision) block with the more precise detection code.

First, initialize radianAngle to be the radian equivalent of whichever direction
(in degrees) our object is facing. The Math class uses radians as they are more
mathematically useful in calculations than the easier to visualize degree
measurement.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[351]

The variables cosAngle and sinAngle are just what the name suggests, and are used
in the block of code which follows this one.

It is worth mentioning that the Math.cos() and Math.sin()
methods are relatively time consuming. We can speed up our collision
detection class by precomputing 360 values for both sin and cos and
then using a simple lookup method instead of this calculation.
However, we maintain our goal of over 60 frames per second, so don't
do so here.

Delete the return statement and add this code in the if(possibleCollision) block:

if (possibleCollision) {

 double radianAngle = ((cp.facingAngle/180)*Math.PI);
 double cosAngle = Math.cos(radianAngle);
 double sinAngle = Math.sin(radianAngle);

In the next block of code, enter a for loop that loops through each of the object's
vertices, translates them from model-space to world-space coordinates, then uses our
previously computed values for cosine and sine of the facingAngle object to rotate
them to their precise locations in the game world.

 //Rotate each and every vertex then check for a collision
 // If just one is then we have a collision.
 // Once we have a collision no need to check further
 for (int i = 0 ; i < cp.vertexListLength; i++){
 // First update the regular un-rotated model space coordinates
 // relative to the current world location (centre of object)
 float worldUnrotatedX =
 cp.worldLocation.x + cp.vertexList[i].x;

 float worldUnrotatedY =
 cp.worldLocation.y + cp.vertexList[i].y;

 // Now rotate the newly updated point, stored in currentPoint
 // around the centre point of the object (worldLocation)
 cp.currentPoint.x = cp.worldLocation.x + (int)
 ((worldUnrotatedX - cp.worldLocation.x)
 * cosAngle - (worldUnrotatedY - cp.worldLocation.y)
 * sinAngle);

www.it-ebooks.info

http://www.it-ebooks.info/

Things That Go Bump – Part II

[352]

 cp.currentPoint.y = cp.worldLocation.y + (int)
 ((worldUnrotatedX - cp.worldLocation.x)
 * sinAngle+(worldUnrotatedY - cp.worldLocation.y)
 * cosAngle);

Now all we do is see if the rotated and translated vertex falls outside of either the
left, right, top, or bottom of the border/map. If it does, we return true; if not, the
loop continues to check each and every vertex the same way (translate, rotate,
check, and so on).

 // Check the rotated vertex for a collision
 if (cp.currentPoint.x < 0) {

 return true;
 } else if (cp.currentPoint.x > mapWidth) {

 return true;
 } else if (cp.currentPoint.y < 0) {

 return true;
 } else if (cp.currentPoint.y > mapHeight) {

 return true;
 }

}

You can run the game now and watch the bullets disappear with a satisfying thud
into the border or fly your ship deadly close to the border.

Let's improve our asteroid collisions.

Precise collision detection with an
asteroid
We did this last because there is a more complicated final step. As in the border
detection, we will need to translate and rotate our object's vertices. However this
time, we will need to do it for two objects.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[353]

Furthermore, once we rotated and translated the asteroid's vertices, we will need
to handle them in pairs of vertices that form a line. These are lines that we will test
against each and every vertex from the other object. This test is of course our crossing
number method that we discussed.

We need to do all of this within the body of the if (distance < cp1.radius +
cp2.radius) { ...}, where we previously just set the collided Boolean to true.

There is quite a lot of code, so we will split it into chunks and see what is going on
at each stage. Also, the code indentation will not always be consistent from block to
block in order to format it in the most readable way possible.

The next few blocks of code are the entire contents of the aforementioned, if block
that needs replacing.

As mentioned previously, we can use a sine and
cosine lookup table here too.

We could make a method to rotate angles as we do this so often. But this is not as
straightforward as it may seem. If we put the rotation code in a method, we will
either have to put the following sine and cosine calculations in it, which will make
it slow or precompute it before the method call and the for loops which is kind of
untidy itself.

Also, if you consider that we need more than one value for both the sine and cosine
of an angle, the method needs to know which value to use, and this isn't rocket
science, but it starts to get even less compact than we might have initially imagined.
So, I opted to avoid the method call altogether, even if the code is a little sprawling.
Actually, if you place the whole lot in a method call, you still get nearly 60 FPS on an
old Galaxy S2 phone. So if you want to tidy things up, go ahead; I just thought it was
worth discussing why I did things this way.

Before we jump into the for loops, as we did with the border detection, we will
compute a few things that won't change for the duration of this method. The sine
and cosine of the facing angle from each of the two collision packages.

 if (distance < cp1.radius + cp2.radius) {

 double radianAngle1 = ((cp1.facingAngle / 180) * Math.PI);
 double cosAngle1 = Math.cos(radianAngle1);
 double sinAngle1 = Math.sin(radianAngle1);

 double radianAngle2 = ((cp2.facingAngle / 180) * Math.PI);
 double cosAngle2 = Math.cos(radianAngle2);

www.it-ebooks.info

http://www.it-ebooks.info/

Things That Go Bump – Part II

[354]

 double sinAngle2 = Math.sin(radianAngle2);

 int numCrosses = 0; // The number of times we cross a
 side

 float worldUnrotatedX;
 float worldUnrotatedY;

Now, we loop through all the vertices from cp2, then test each in turn with all the
sides (vertex pairs) from cp1. Remember an asteroid has an extra vertex of padding
that is the same as the first. Therefore, we can test the last side of the asteroid. We
must always pass in the asteroid collision package as the second argument when
calling CD.detect().

In the next block of code, translate and then rotate the object being tested against an
asteroid.

for (int i = 0; i < cp1.vertexListLength; i++) {

 worldUnrotatedX = cp1.worldLocation.x + cp1.vertexList[i].x;
 worldUnrotatedY = cp1.worldLocation.y + cp1.vertexList[i].y;

 // Now rotate the newly updated point, stored in currentPoint
 // around the centre point of the object (worldLocation)
 cp1.currentPoint.x = cp1.worldLocation.x +
 (int) ((worldUnrotatedX - cp1.worldLocation.x)
 * cosAngle1 - (worldUnrotatedY - cp1.worldLocation.y) *
 sinAngle1);

 cp1.currentPoint.y = cp1.worldLocation.y +
 (int) ((worldUnrotatedX - cp1.worldLocation.x)
 * sinAngle1 + (worldUnrotatedY - cp1.worldLocation.y) *
 cosAngle1);

 // cp1.currentPoint now hold the x/y
 // world coordinates of the first point to test

Now using a pair of vertices at a time, from the asteroid, translate and rotate both to
their final world-space coordinates ready for the next block of code, where we will
use the vertex locations calculated in the previous block and this block.

// Use two vertices at a time to represent the line we are testing
// We don't test the last vertex because we are testing pairs
// and the last vertex of cp2 is the padded extra vertex.
// It will form part of the last side when we test vertexList[5]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[355]

for (int j = 0; j < cp2.vertexListLength - 1; j++) {

 // Now we get the rotated coordinates of
 // BOTH the current 2 points being
 // used to form a side from cp2 (the asteroid)
 // First we need to rotate the model-space
 // coordinate we are testing
 // to its current world position
 // First update the regular un-rotated model space coordinates
 // relative to the current world location (centre of object)

 worldUnrotatedX = cp2.worldLocation.x + cp2.vertexList[j].x;
 worldUnrotatedY = cp2.worldLocation.y + cp2.vertexList[j].y;

 // Now rotate the newly updated point, stored in worldUnrotatedX/y
 // around the centre point of the object (worldLocation)

 cp2.currentPoint.x = cp2.worldLocation.x +
 (int) ((worldUnrotatedX - cp2.worldLocation.x)
 * cosAngle2 - (worldUnrotatedY - cp2.worldLocation.y) *
 sinAngle2);

 cp2.currentPoint.y = cp2.worldLocation.y +
 (int) ((worldUnrotatedX - cp2.worldLocation.x)
 * sinAngle2 + (worldUnrotatedY - cp2.worldLocation.y) *
 cosAngle2);

 // cp2.currentPoint now hold the x/y world coordinates
 // of the first point that
 // will represent a line from the asteroid

 // Now we can do exactly the same for the
 // second vertex and store it in
 // currentPoint2. We will then have a point and a line (two
 // vertices)we can use the
 // crossing number algorithm on.

 worldUnrotatedX = cp2.worldLocation.x + cp2.vertexList[i + 1].x;
 worldUnrotatedY = cp2.worldLocation.y + cp2.vertexList[i + 1].y;

 // Now rotate the newly updated point, stored in worldUnrotatedX/Y
 // around the centre point of the object (worldLocation)
 cp2.currentPoint2.x = cp2.worldLocation.x +
 (int) ((worldUnrotatedX - cp2.worldLocation.x)

www.it-ebooks.info

http://www.it-ebooks.info/

Things That Go Bump – Part II

[356]

 * cosAngle2 - (worldUnrotatedY - cp2.worldLocation.y) *
 sinAngle2);

 cp2.currentPoint2.y = cp2.worldLocation.y +
 (int) ((worldUnrotatedX - cp2.worldLocation.x)
 * sinAngle2 + (worldUnrotatedY - cp2.worldLocation.y) *
 cosAngle2);

Here, we detect if the current vertex from either the ship or a bullet crosses the
line formed by the current vertex pair of the asteroid. If it does, we increment
numCrosses.

// And now we can test the rotated point from cp1 against the
// rotated points which form a side from cp2

if (((cp2.currentPoint.y > cp1.currentPoint.y) !=
 (cp2.currentPoint2.y > cp1.currentPoint.y)) &&
 (cp1.currentPoint.x < (cp2.currentPoint2.x -
 cp2.currentPoint2.x) *(cp1.currentPoint.y -
 cp2.currentPoint.y) / (cp2.currentPoint2.y -
 cp2.currentPoint.y) + cp2.currentPoint.x)){

 numCrosses++;

}

Finally, we use the modulus operator to determine if numCrosses is odd or even.
As discussed, we return true (collision) for odd and false (no collision) for even.

 }
 }
 // So do we have a collision?
 if (numCrosses % 2 == 0) {
 // even number of crosses(outside asteroid)
 collided = false;
 } else {
 // odd number of crosses(inside asteroid)
 collided = true;
 }

 }// end if

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

[357]

You can now fly your ship right up to the asteroids and only get hit when it really
looks like you should. Refer to the following screenshot:

Now, all of our collision detection and our Asteroids simulator game is done!

Finishing touches
We can continue to improve our game. For example, it wouldn't be too hard to
spawn two or three smaller asteroids when the current asteroid is destroyed. We just
need an array to hold the smaller asteroids. When we deactivate the regular asteroid,
the array activates some previously instantiated smaller ones at the same location as
the regular one. We can then make some minor modifications to the way we count
asteroids, and we will have a neat new feature.

The arcade classic, Asteroids, had a mean UFO that would turn up occasionally. It
would be simple to design a UFO shape from lines, and have it randomly proceed
from left to right, or right to left, moving up and down a bit as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Things That Go Bump – Part II

[358]

Finally, we can add a hyperspace button. This is a kind of last resort for the player
when they are sure that death is imminent. Tap the hyperspace button and the ship
will respawn in a random location. We will just need to add a button to the array
in the InputController class and a call to a new, simple randomHyperspaceJUmp
method in the Ship class.

We can also add Google Play achievements and leaderboards and then publish the
game. If you publish a game that uses OpenGL, you need to add this declaration to
the AndroidManifest.xml file:

<uses-feature android:glEsVersion="0x00020000"
android:required="true" />

Try and add some of the improvements we talked about and perhaps some more of
your own. If you publish your game or even if you don't, I would love to hear your
ideas or see a link to your projects on gamecodeschool.com.

I think we are done!

Summary
I hope you have enjoyed our whirl-wind tour, making games for Android, and I
hope you keep making lots of new games!

www.it-ebooks.info

gamecodeschool.com
http://www.it-ebooks.info/

[359]

Index
A
Android Activity lifecycle

about 16
reference link 17

Android device
Tappy Defender, debugging on 41-43

Android Studio
file structure 18
installing 10, 11
URL 10

asteroid collision detection
about 331
crossing number 331, 332
phase 332

asteroids
drawing 309-314
moving 309-314
reference link, for games 251

Asteroids simulator game
about 1, 5, 252
asteroid, destroying 345, 346
checks, performing 344
collision package, adding to

Asteroid class 339, 340
collisions, testing in update() 346-350
features 5
game controls 252
helper methods 344
improving 357, 358
rules 252
ship, destroying 344

B
backstory, Tappy Defender game

about 13, 14
enhanced draw method 100

BFXR
URL 82

Bob
animating 165-171
functionality, adding to 141-149

border collision
about 330
detection phase 330

Bullet class
collision package, adding to 336
creating 298-300

bullet collision detection 205-207

C
CD class

about 341
radius overlapping, implementing for

asteroid 342, 343
radius overlapping, implementing for

ships 342, 343
rectangle, implementing for border 343, 344

code structure, Tappy Defender game
about 16
Android Activity lifecycle 16, 17

collision detection
about 62
options 62
planning for 329, 330

www.it-ebooks.info

http://www.it-ebooks.info/

[360]

collision package
access, providing to 336
adding, to Asteroid class 339, 340
adding, to Bullet class 336
adding, to objects 336
adding, to SpaceShip class 337-339

CollisionPackage class 333-335
control buttons, HUD object 315-318
CopyOnWriteArrayList

reference link 175
crossing number algorithm 65

D
design pattern, Tappy Defender game

about 15
control 15
model 16
reality check 16
view 16

drone 190-195

E
endianness

reference link 276
enemies

building 52
designing 53
spawning 53, 54
update method, handling 55-58

existing classes
InputController class, adding 304-308
reusing 301
SoundManager class, adding 302-304

F
fire tiles

adding 207-211
Flappy Bird apps, Google Play

URL 15
flight, Tappy Defender game

background, scrolling 58-60
fragment shader 253

G
game engine, Tappy Defender game

layout, locking to landscape 104
platform activity 101, 102
PlatformView class 105
upgrading 101

game loop, Tappy Defender
class code, structuring 30-32
coding 28
game activity 32-34
new class, creating for view 29, 30
view, building 28, 29

GameObject class
about 109-115
functionality, adding to 293-297

GameObject super class
building 271-281

GL Shader Language (GLSL) 254, 261
guard

about 195
route, generating for 195-203

H
home screen, Tappy Defender game

AndroidManifest.xml file,
configuring 27, 28

building 19
functionality, coding 24-26
GameActivity, creating 27
project, creating 19, 20
UI, building 21-24

HUD
displaying 71-73

HUD objects
about 314
control buttons, adding 315-318
declaring 326-328
drawing 326-328
initializing 326-328
life icons 323-325
tally icons 319-322

www.it-ebooks.info

http://www.it-ebooks.info/

[361]

I
identity matrix

reference link 278
InputController class

adding 304-308
installing

Android Studio 10, 11
JDK 7-10

iteration, Tappy Defender game
about 89
back button, handling 97
enemy graphics, adding 89, 90
exercise, in balance 91-95
format time 96, 97

J
Java Development Kit (JDK)

installing 7-10
Java SE Downloads

URL 7

L
level designs, tough retro platformer project

about 242
cave 243
city 244
forest 245
HUD 247, 248
mountains 246, 247

life icons, HUD objects 323-326

M
machine gun

building, with variable rate of fire 173-178
MachineGun class

implementing 174-178
matrices

about 254
reference link 278

mechanics, Tappy Defender game 14, 101
MotionEvent class

reference link 47
multiphase collision detection 150-157

O
objects

collision package, adding to 336
OpenGL (Open Graphics Library)

reasons, for using 252
working 252

OpenGL ES 1 253
Open Graphics Library for Embedded

Systems (OpenGL ES 2)
about 1, 252
Activity class 255
benefits 253
class, used for managing game 258, 259
layout, locking to landscape 255
preparing 255
renderer 264-270
simple shaders, managing 259-263
using 254
view 257

optimizations, collision detection
multiple hitboxes 65
neighbor checking 65, 66

options, collision detection
crossing number algorithm 65
radius overlapping 63, 64
rectangle intersection 62, 63

P
persistence, Tappy Defender game

adding 87-89
pickups

about 180
collecting 180-190
drone 190-195
guard 195-203

PlatformView class
about 105
basic structure 106-109
enhanced draw method 132-134
enhanced update method 131
levels, creating 122-130
view, through viewport 116-121

player input 157-165
PlayerShip object

about 34-37
drawing 38

www.it-ebooks.info

http://www.it-ebooks.info/

[362]

Q
quadrants

reference link 296

R
radius overlapping 63, 64
rectangle intersection 62, 63
route

generating, for guard 195-203
rules, Tappy Defender game

about 15, 101
implementing 74-77

S
scene, Tappy Defender game

Canvas object 39, 40
drawing 37
frame rate, controlling 41
Paint object 39, 40
PlayerShip, drawing 38
plotting 37, 38

scores 314
shader program 253
sound FX, Tappy Defender game

adding 82
coding 85-87
generating 82-84
SoundPool class, used for playing

sounds 85
SoundManager class

about 137-141
adding 302, 304

spaceship
about 281, 282
bringing, to life 293-297

SpaceShip class
collision package, adding to 337-339

spaceship, controlling
about 45
boosters, adding to spaceship 47-50
screen resolution, detecting 50-52
touches, detecting 46

Star class
update method, adding 290-292

static game border
drawing 287-289

T
tally icons, HUD object 319-322
Tappy Defender game

about 2, 100
backstory 13, 14, 100
best options 66-70
code structure 16
debugging, on Android device 41-43
deploying 41
design pattern 15
ending 78-81
finishing 98
game engine, upgrading 101
game loop, coding 28
home screen, building 19
iteration 89
mechanics 14, 101
persistence, adding 87-89
planning 13
PlayerShip object 34-37
restarting 81
rules 15, 101
rules, implementing 74-77
scene, drawing 37
sound FX, adding 82
sound FX, generating 82-84

tough retro platformer project
about 3
aesthetic props, adding 211, 212
features 3, 4
game rules 236
level designs 242
levels 236
new platform tiles, adding 212-218
new scenery objects, adding 218-226
pause menu, with moveable

viewport 234-236
scrolling parallax backgrounds 226-234
travelling, between levels 236-242

V
vertex shader 253

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Android Game Programming by Example

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Building Android Games with
OpenGL ES [Video]
ISBN: 978-1-78328-613-3 Duration: 01:42 hours

A comprehensive course exploring the creation of
beautiful games with OpenGL ES

1. Create captivating games through creating
simple and effective codes in Java.

2. Develop a version of the classic game Breakout
and see how to monetize it.

3. Step-by-step instructions and theoretical
concepts describe each activity before you
implement them.

Unity Android Game Development
by Example Beginner's Guide
ISBN: 978-1-84969-201-4 Paperback: 320 pages

Learn how to create exciting games using Unity 3D
for Android with the help of hands-on examples

1. Enter the increasingly popular mobile market
and create games using Unity 3D and Android.

2. Learn optimization techniques for efficient
mobile games.

3. Clear, step-by-step instructions for creating a
complete mobile game experience.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Learning Unity Android Game
Development
ISBN: 978-1-78439-469-1 Paperback: 338 pages

Learn to create stunning Android games using Unity

1. Leverage the new features of Unity 5 for the
Android mobile market with hands-on projects
and real-world examples.

2. Create comprehensive and robust games
using various customizations and additions
available in Unity such as camera, lighting,
and sound effects.

3. Precise instructions to use Unity to create an
Android-based mobile game.

Android NDK Game Development
Cookbook
ISBN: 978-1-78216-778-5 Paperback: 320 pages

Over 70 exciting recipes to help you develop mobile
games for Android in C++

1. Tips and tricks for developing and debugging
mobile games on your desktop.

2. Enhance your applications by writing
multithreaded code for audio playback,
network access, and asynchronous
resource loading.

3. Enhance your game development skills
by using modern OpenGL ES and develop
applications without using an IDE.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Player 1 UP
	A closer look at the games
	Tappy Defender
	Tough retro platformer
	Asteroids simulator

	Setting up your development environment
	Installing the JDK
	Installing Android Studio

	Summary

	Chapter 2: Tappy Defender – First Step
	Planning the first game
	Backstory
	The game mechanics
	Rules for the game
	The design
	Control
	Model
	View
	Design pattern reality check

	The game code structure
	The Android Activity lifecycle

	The Android Studio file structure

	Building the home screen
	Creating the project
	What we did

	Building the home screen UI
	What we did

	Coding the functionality
	Creating GameActivity
	What we did

	Configuring the AndroidManifest.xml file
	What we did

	Coding the game loop
	Building the view
	Creating a new class for the view
	What we did
	Structuring the class code

	The game activity

	The PlayerShip object
	Drawing the scene
	Plotting and drawing
	Drawing PlayerShip
	The Canvas and Paint objects

	Controlling the frame rate

	Deploying the game
	Debugging on an Android device

	Summary

	Chapter 3: Tappy Defender – Taking Flight
	Controlling the spaceship
	Detecting touches
	Adding boosters to the spaceship
	Detecting the screen resolution

	Building the enemies
	Designing the enemy
	Spawning the enemy
	Making the enemy think

	The thrill of flight – scrolling the background
	Things that go bump – collision detection
	Collision detection options
	Rectangle intersection
	Radius overlapping
	The crossing number algorithm

	Optimizations
	Multiple hitboxes
	Neighbor checking

	Best options for Tappy Defender

	Summary

	Chapter 4: Tappy Defender – Going Home
	Displaying a HUD
	Implementing the rules
	Ending the game
	Restarting the game

	Adding sound FX
	Generating the FX
	The SoundPool class
	Coding the sound FX

	Adding persistence
	Iteration
	Multiple different enemy graphics
	An exercise in balance
	Format time
	Handle the back button

	The finished game
	Summary

	Chapter 5: Platformer – Upgrading the Game Engine
	The game
	The backstory
	The game mechanics
	Rules for the game

	Upgrading the game engine
	The platform activity
	Locking the layout to landscape
	The PlatformView class
	The basic structure of PlatformView
	The GameObject class
	The view through a viewport
	Creating the levels
	The enhanced update method
	The enhanced draw method

	Summary

	Chapter 6: Platformer – Bob, Beeps, and Bumps
	The SoundManager class
	Introducing Bob
	Multiphase collision detection
	Player input
	Animating Bob
	Summary

	Chapter 7: Platformer – Guns, Life, Money, and the Enemy
	Ready aim fire
	Pickups
	The drone
	The guard

	Summary

	Chapter 8: Platformer – Putting It All Together
	Bullet collision detection
	Adding some fire tiles
	Eye candy
	The new platform tiles
	The new scenery objects
	Scrolling parallax backgrounds
	Pause menu with moveable viewport
	Levels and game rules
	Traveling between levels

	The level designs
	The cave
	The city
	The forest
	The mountains
	The HUD

	Summary

	Chapter 9: Asteroids at 60 FPS with OpenGL ES 2
	Asteroids simulator
	The game controls
	Rules for the game

	Introducing OpenGL ES 2
	Why use it and how does it work?
	What is neat about Version 2
	How we will use OpenGL ES 2

	Preparing OpenGL ES 2
	Locking the layout to landscape
	Activity
	The view
	A class to manage our game
	Managing simple shaders
	The game's main loop – the renderer

	Building an OpenGL-friendly, GameObject super class
	The spaceship
	Drawing at 60 + FPS
	Summary

	Chapter 10: Move and Draw with OpenGL ES 2
	Drawing a static game border
	Twinkling stars
	Bringing the spaceship to life
	Rapid fire bullets
	Reusing existing classes
	Adding the SoundManager class
	Adding the InputController class

	Drawing and moving the asteroids
	Scores and the HUD
	Adding control buttons
	Tally icons
	Life icons
	Declaring, initializing, and drawing the HUD objects

	Summary

	Chapter 11: Things That Go Bump – Part II
	Planning for collision detection
	Colliding with the border
	The first phase of border collision detection

	Colliding with an asteroid
	The crossing number
	The first phase and overview of asteroid collision detection

	The CollisionPackage class
	Adding collision packages to the objects and making them accessible

	The CD class outline
	Implementing radius overlapping for asteroids and ships
	Implementing rectangle intersection for the border

	Performing the checks
	Helper methods
	Destroying a ship
	Destroying an asteroid

	Testing for collisions in update()

	Precise collision detection with the border
	Precise collision detection with an asteroid
	Finishing touches
	Summary

	Index

